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Orbital Paramagnetism of Electrons in a Two-Dimensional Lattice
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It is shown that the orbital response of a two-dimensional electron gas in a periodic potential to a weak
magnetic field is always paramagnetic when the Fermi level is suSciently close to a saddle point of the
band structure. Another instance of orbital paramagnetism is found when the Fermi level is close to a
narrow indirect gap.
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Recently, there has been considerable interest in the
behavior of a two-dimensional noninteracting electron gas
under the inhuence of both a periodic potential and a
magnetic field [1-4]. In the absence of the periodic po-
tential the ground-state energy is generally increased by
the magnetic field B, except in the special case of com-
pletely filled Landau levels where it equals the B=0
value. In the weak magnetic-field regime (it 8 ((ktt T
&&FF, where p is the magnetic moment, T is the temper-
ature, and EF is the Fermi energy) one obtains the well-

known Landau-Peierls diamagnetic susceptibility [5]
go= —e /24trmc in two dimensions (we ignore spin for
simplicity). On the other hand, Hasegawa et al. [1],
working with a schematic tight-binding model where the
effect of the magnetic field is taken into account by
means of the Peierls substitution [6], find that the
ground-state energy is generally decreased by the mag-
netic field, and attains an absolute minimum when there
is one Aux quantum per electron. In the weak magnetic-
field limit, this model yields a paramagnetic (i.e., posi-
tive) orbital susceptibility provided that the occupation
fraction of the band is between 20'%%uo and 80'%%uo [7].

The tight-binding model of Hasegawa et al. [1] can be
and has been criticized on the basis that it does not in-

clude the diamagnetic energy of the tight-binding orbitals
and the reduction of the hopping amplitude by the mag-
netic field. When these efI'ects are taken into account the
magnetic response appears to revert to familiar atomic
diamagnetism. In the case of a weak periodic potential, it
is found, treating the periodic potential in second-order
perturbation theory, that the magnetic field generally in-

creases the ground-state energy [3,4]. Consistent with

this, the weak magnetic-field susceptibility is found to be
diamagnetic. All these findings seem to imply that orbit-
al paramagnetism, although possible in principle, is not
realized in nature.

Actually, the case for orbital paramagnetism in two di-
mensions is much better than the above results suggest.
This will be demonstrated in this Letter for the physical
case of weak magnetic field [8] and finite periodic poten-
tial. Our theory treats the periodic potential exactly, and
the magnetic field perturbatively. Thus, we are able to
calculate the exact low-magnetic-field susceptibility in a
given periodic potential. In contrast to this, the ap-
proaches of Refs. [3] and [4] start from a finite magnetic
field, which they treat exactly, but then treat the periodic
potential approximately, either by a perturbative expan-
sion around the uniform state, or by a tight-binding mod-
el. These approaches are unable to capture all the eA'ects

of the band structure on the low-magnetic-field suscepti-
bility. We shall see that the exact susceptibility contains
terms which depend only on the properties of electrons at
the Fermi surface as well as many other terms which de-
pend on all the occupied states. Ordinarily, the two types
of terms are of the same order of magnitude. However,
in a two-dimensional system, when the Fermi level is
close to a saddle point of the band structure, the Fermi
surface term takes over, due to the logarithmic diver-
gence of the density of states. We shall show that this
contribution is always paramagnetic. The phenomenon
can be physically understood as a consequence of magnet-
ic breakdown of quasiclassical electronic orbits in the vi-

cinity of a saddle point, where the quasiclassical approxi-
mation fails. Even if the Fermi level is not close to a
saddle-point singularity, the orbital response can still be
paramagnetic. An instance of this eAect is found when
the Fermi level approaches a narrow indirect gap. This
will be explicitly demonstrated below, by solving a model
periodic potential.

We start from the second-order perturbative expansion
for the shift of the ground-state energy per unit area of a
periodic, noninteracting system in the presence of a vec-
tor potential A(r):

, g g~„(q+G) ~„,(q+G, q+G')+ "' ~.(q+G').~„,n(G' G)—
G, G' p, v P1

2 f+ 2
AE( d g

Here R„,(q+G, q+G') is the current-current response function, q is a wave vector in the first Brillouin zone, G and G'

are reciprocal-lattice vectors, n(G) is a Fourier component of the electronic density, A(q) is the Fourier transform of
the vector potential, and rn is the electron mass. In a noninteracting system
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where E„k are band energies, f(E) is the Fermi distribution function,

A„'„(k;q+G) = &u„k+q(2Ie' ' (k, —iv, )e' ' Iu„,k qip)
m

(3)

is the current vertex, and ly„k) =exp(ik r)lu„k) are Bloch states. A crucial property of the current-current response
function is

g R„,(q+ G, q +G') (q, +G,' ) = — n (G' —G) (q„+G„' ) .
1

V m
(4)

This follows from gauge invariance of the current response and guarantees that the continuity equation for the current is
satisfied. In the limit q~ 0, G'=0, Eq. (4) implies

R„,(G, O) = — n( G)—S„„1 (5)

Now, using the Landau gauge for the uniform magnetic field A(r) = Byx, su—bstituting in Eq. (1), and using Eqs.
(2)-(5), we obtain the orbital magnetic susceptibility per unit area as

8 E e 1
Z = — = — — R (qy, qy)

'dB e p e 2 |Iq q=0

@intra

This expression provides a simple way of calculating the noninteracting susceptibility for an arbitrary band structure.
Note that it is much more compact than any previous expression based on a direct expansion of the free energy [9]. Of
course, in the free-electron gas limit, it reduces to the Landau-Peierls result [5].

In Eq. (2) we distinguish intraband contributions (n =n') and interband contributions (nan'). The intraband contri-
butions can all be reduced to integrals over the Fermi line

di (n)

', [a.'E„ka2E„k —(a.a,E„) ]+28 E„kl, ' (k) —
I~, (k) I' ~, (7)

where the primed sum is taken over the bands which intersect the Fermi level and dlj, " is the length element along the
nth segment of the Fermi line. 8„ is a shorthand for rl/Bk„Expl. icit expressions for k ' (k) and k~ ~(k) can be given in

terms of Bloch eigenvalues and wave functions:

6
[&u. ,kl

—iV. lu.",k'&+&u.",k'I —iV, lu. , k&
—&u.",k'Ik. —iV. +

x"'(k) = [&u„ kl
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where I
u„'k) and Iu„k) are defined by the perturbative expansion

I u n, k +qj/2 & I u. k& +q I u", i,
'
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The interband contribution, on the other hand, is given by a sum over all occupied states:

(lo)

+inter
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The second derivative can be expressed in terms of Bloch
wave functions, but these expressions are quite lengthy
and will be given else~here.

Equations (7)-(11) are very complex. The orbital sus-
ceptibility is the sum of many terms, some diamagnetic,
others paramagnetic, most of which elude a simple physi-
cal interpretation. It is generally impossible to know the
sign of the result without performing the calculation. A
remarkable exception occurs in two-dimensional systems
when the Fermi energy happens to be near a saddle point
of the band structure. The shape of the constant-energy
curves in the vicinity of the saddle point is given by four

Zl nil'H (12)

where 1V(EF) is the density of states at the Fermi level
and m~, m2 are the two eA'ective masses at the saddle

t
branches of hyperbolae as shown in Fig. 1. It is well
known that the vanishing of IVE,k I at the saddle point
leads to a logarithmic divergence in the density of states.
Since the second derivatives of the energy are finite at the
saddle point, we see that the term within square brackets
of Eq. (7) diverges logarithmically
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FIG. l. Expanded view of quasiclassical electron trajectories
(solid lines) near a saddle point. The broken line depicts the
tunneling motion of electrons.

point [eigenvalues of the matrix (t),t)&E„k/6 ) ']. This
term is positive definite, i.e., paramagnetic, because
m&m~&0. All other terms in the susceptibility remain
finite as the Fermi level approaches the saddle point. In
the )(.

(' term of Eq. (7) the saddle-point singularity is
canceled by the vanishing factor 8,E„k. The 1 term—which is always paramagnetic —is also nonsingular at
the saddle point. This is because the vanishing of VkE„k
at the saddle point kp requires the Bloch wave functions

yn k, to be purely real or u„k, =exp( —ikp. r) u, k„where
u kp is real. This fact, together with the definition of u„'k
[Eq. (10)], can be used to prove that ((,

( (kp) =0 [10].
Finally, the sum over occupied states [Eq. (11)l is insen-
sitive to Fermi-surface singularities. Thus Eq. (12) de-
scribes the exact asymptotic behavior of the susceptibility
as EF approaches the singularity.

The physical reason for the paramagnetic response
near a saddle point is easily understood. In the quasiclas-
sical approximation the electrons move along constant-
energy curves shown in Fig. 1. As the electrons approach
the saddle point, however, their group velocity tends to
zero. In this region the quasiclassical approximation
fails, and the electrons tunnel from one trajectory to the
neighboring one as shown by the dashed line in Fig. 1.
This is the well-known phenomenon of magnetic break-
down [11]. The resulting rotation of the electron is in a
direction opposite to the classical direction of rotation.
The induced magnetic moment is reversed.

At this point a few numerical calculations are required
in order to assess quantitatively the size of the efIect and
hence the possibility of observing it in susceptibility mea-
surements. We take as a model the separable two-di-
mensional potential

V(x,y ) =2 Vp [cos (2+x/a ) + cos (2my/a )] .

By varying the dimensionless parameter a =ma Vp/
4z 6 we can go from the free-electron gas regime
(Vp 0) to the tight-binding regime (Vp (x(). The ei-

genvalues and eigenfunctions of this problem are given by

Pn„k, ;nz, kz X(,y) 'Pn~, k (X)gn( kz(y) („ (i4)

Enx, kx'ny, ky =Enx, kx Edy ky (is)
where E„k and y„k are the Bloch eigenvalues and eigen-
functions of the one-dimensional problem with periodic
potential 2Vp[cos(2rrx/a)], which we can solve very accu-
rately by numerical diagonalization on a plane-wave
basis. Note that the band structure has a saddle point at
k =rr/a, k~ =0 and symmetry-related points.

Figure 2 shows our results for the orbital susceptibility
at various values of u. The smallest value of a =0.04 is
chosen so that the maximum of the lowest-energy band at
k„=k~ =rr/a is barely inferior to the minimum of the
next higher band at k =x/a, k~ =0. Thus, the model has
a narrow indirect gap between the two lowest bands, and
we plot the susceptibility as a function of Fermi energy
within the lowest band. Near the bottom of the band we
obtain the diamagnetic susceptibility of a free-electron
gas with effective mass m/m* =0.95. As the Fermi ener-

gy increases we observe a gradual crossover from dia-
magnetism to paramagnetism. The paramagnetic suscep-
tibility diverges (logarithmically) at the saddle point
EF/&=0. 5 as expected (W is the width of the lowest
band). The location of the crossover depends sensitively
on the numerical value of the nonsingular terms in Eqs.
(7)-(11). These terms are diamagnetic, and tend to op-
pose the crossover. If we now increase the Fermi energy
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FIG. 2. Orbital susceptibility g in units of free-electron sus-

ceptibility go as a function of Fermi energy EF in units of the
width of the lowest band W. The calculations are done for the
separable model potential of Eq. (13) at three values of a (0.04,
0.10, 0.50) such that the lowest band does not overlap with oth-
er bands. The saddle point is located at Eq/&=0. 5. The case
a=0.04 has a narrow indirect gap. The dashed line is the sus-
ceptibility of harmonic oscillators localized near the minima of
the potential at a =0.50.
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beyond the saddle point, we first observe a crossover from
paramagnetism back to diamagnetism; then as the lowest
band becomes almost completely filled we observe a
second sharp reversal to paramagnetism. This unexpect-
ed behavior is entirely due to the interband term, Eq.
(11). The energy denominator for the two lower bands
(Ep p E

~
t. +&& ) becomes very large when qy (tt/

a)y, the wave vector connecting the maximum of the
lowest band (0,0) to the minimum of the next higher
band (0, 1). As a result, the second derivative of this term
becomes unusually large even at q =0 and gives a para-
magnetic contribution which eventually dominates the
susceptibility. Of course, this eA'ect can only occur when
the indirect gap is very narrow. In the present case, it
rapidly disappears as a increases beyond 0.05 (see Fig.
2). Note that the paramagnetic orbital susceptibility
both in the region of the saddle point and in the region of
the narrow indirect gap can be quite large, in fact, several
times larger than the Landau-Peierls susceptibility. This
is therefore a large effect that should be detectable in ex-
periments on dense materials with quasi-two-dimensional
electronic structures, such as the superconducting cu-
prates (above T,).

The orbital susceptibility in a tight-binding case
(a =0.5) is also plotted in Fig. 2. In this case we always
observe a diamagnetic response, except in the vicinity of
the saddle-point singularity where paramagnetism takes
over. This result is consistent with the observation of
Refs. [3] and [4] according to which one should essential-
ly see atomic diamagnetism in the tight-binding limit.
However, due to our exact treatment of the periodic po-
tential, we also find the weak paramagnetic singularity in

a narrow range of Fermi energies near the saddle point of
the band structure. It is interesting to compare the exact
diamagnetic susceptibility calculated from Eqs. (7)-(11)
with the susceptibility of a system of independent har-
monic oscillators localized near the minima of the period-
ic potential. The latter is shown as a dashed line in Fig.
2, at a=0.5. Clearly, the two curves are quite similar.
The agreement becomes perfect at larger values of a (the
region of the saddle-point singularity shrinks to zero) giv-

ing us a nontrivial check of the correctness of our calcula-
tions.

In conclusion, I emphasize that the occurrence of a
paramagnetic orbital susceptibility by no means implies
that the system has a tendency toward orbital ferro-
magnetism or, for that matter, any other current-carrying
instability. In fact, the energy required to create a weak
current distribution in the noninteracting electron gas is
determined, in second-order perturbation theory, by the
inverse current-current response tensor [Eq. (2)], which
is negative definite, ensuring stability. Thus, the question
of stability is completely unrelated to the sign of the
coefficient of q in the small-q expansion of R„„[seeEq.
(6)], which determines the character (paramagnetic or
diamagnetic) of the orbital susceptibility.
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