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Relaxation of Randomly Cross-Linked Polymer Melts
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The dynamical properties of randomly cross-linked polymer melts, far above the vulcanization thresh-
old, are studied using molecular-dynamics simulations. The mean-square displacements of the middle
and end monomers of the chains as well as the cross-links are considered. The dynamic scattering func-
tion S(cl, t) as measured by neutron spin echoes is also calculated. The average strand length between
two cross-links is about 4 of the entanglement length of the un-cross-linked melt. By introducing a new

intermonomer potential, we can explicitly test the influence of trapped entanglements. For the present
system, the frozen entanglements change the plateau modulus by about 25%.

struction these potentials can have the same second virial
such that the contribution of the conserved chain topolo-

gy can be directly evaluated. In this Letter we report the
first results of an extended series of simulations on cross-
linked polymer networks.

Here we only consider randomly cross-linked polymer
melts far above the vulcanization threshold. Most of the
chains (96%) are in the infinite network. This situation
probably most closely resembles the case of radiation
cross-linking. The initial configurations are equilibrated
polymer melts (M chains of N monomers), similar to
those used in earlier studies on the dynamics of entangled
polymers [4]. The chains are in a cubic box with periodic
boundary conditions. All monomers interact via a purely
repulsive Lennard-Jones (LJ) potential,
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where r, =2' o. For subsequent monomers along the
chain an anharmonic interaction [4,5] is added,
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where k =30e/a and Ro=1.5a. For temperature kttT/e
= I and density p =N/V =0.85a the entanglement
length N, =35 [4]. The entanglement time z, (Rouse
time of a subchain of length N, ) is roughly 1800', where
r =e(m/e) 'I . In our molecular-dynamics simulation the
monomers are weakly coupled to a heat bath and the cor-
responding friction coeScient 1 =0.5 r . The integra-
tion of the equation of motion was carried out using a ve-

locity Verlet algorithm [6,7] with time step ht =0.0135r.
We studied six different polymer melts: five samples of
50 chains of N =50 (50/50) and one large sample of 400
chains of N =50 (400/50). The total length of the long-
est run was 40000~. Here we study the case p =2 cross-
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Recently there has been a significant experimental [I]
and theoretical effort [2] to understand the relaxation be-
havior of cross-linked polymer systems. Cross-linked
polymers, such as a gel or rubber, are the basis for most
industrial macromolecular products as well as the stabil-
izing structure in many biological systems. Thus a de-
tailed understanding of such systems is highly desirable
and a subject of intense research for more than fifty years
[3]. The difficulty with understanding rubber is that it

depends on a variety of parameters, including the cross-
linking procedure, the number of cross-links, and the
number of trapped entanglements. The number of cross-
links determines the average strand length and the distri-
bution of strand lengths A', between two cross-links. The
strand-length distribution plays an important role in

determining the elastic and relaxational properties of the
system. Topologically trapped entanglements are also
thought to play an important role, particularly when the
average strand length is much longer than the entangle-
ment length of the un-cross-linked melt. Since the con-
straints are permanent, the system is nonergodic and re-
laxation is very slow. Experimentally, a detailed under-
standing of how rubber relaxes has been slow in develop-

ing, since it is diScult to produce networks under condi-
tions which allow a clear specification of the distribution
of strand lengths N, and the nuinber of trapped entangle-
ments. Analytic theories of rubber are complex and are
often forced to make a number of very serious, untested
approximations in order to proceed. The role of entangle-
ments in particular is poorly understood [2].

In a simulation it is possible to modify the cross-linking
procedure in order to produce a variety of networks. Pos-
sible systems range from randomly cross-linked melts to
regular lattice structures, where the lattice bonds are re-
placed by polymer chains of constant length. One can
also use different interaction potentials, which either al-
low the chains to cut through each other or not. By con-
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links per chain (p, =0.84 [8]). This gives an average of
four cross-linked monomers per chain, dividing each
chain into five segments on average [9]. The cross-
linking was done by first randomly selecting a point in

space. The nearest monomer to that point was then taken
as one of the cross-linking sites. All monomers within a
sphere of reaction radius r, =1.3a [= (c ) 'i of this sys-
tem] were then enumerated. The first monomer was then
bonded to one of the monomers within this reaction
volume selected at random, provided it was not a nearest
or second-nearest neighbor along the chain of the original
monomer. This procedure was then repeated pM times.
The networks had approximately the number of intra-
chain connections predicted by Tonelli and Helfand [10].
The bond potential of a cross-link was taken to be the
same as for the original chains, Eq. (2). For p=2 the
average strand length N,, between two consecutive cross-
links was (N, ) =8.9+ 0. 1 which is only —, of N, for the
corresponding melt. The average length of a dangling
end (Nd) =11.6+ 0.2 [9]. On average, 96% of the chains
belong to the infinite network (the remaining monomers
were free un-cross-linked chains) with about 46% of the
monomers in dangling ends. We found that after remov-
ing the dangling ends most of the remaining monomers
were elastically active.

One of the main problems in rubber elasticity is to
separate the various contributions to the elastic modulus.
While this is not possible experimentally, it can be done
in a simulation by studying the same cross-linked melts
with two interaction potentials. In this case the repulsive
LJ potential for nonbonded monomers is replaced by a
soft-core potential of the form
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r, and t., are chosen so that the chains in the un-cross-
linked melt have the same persistence length, pressure,
and Rouse friction as for the LJ potential. For p
=0.85cr, r, =1.0a and e, =2.22@. Rn in Eq. (2) was
increased to 1.75o. and the overall interaction between
connected monomers along the chain was reduced by a
factor of 0.175 [7]. With this interaction, monomers can
now cross each other with a barrier of a few kaT. Since
the macroscopic properties of the chains are not altered,
these two potentials can be used to identify the contribu-
tion from the noncrossability of the chains. Note that the
general monomer packing constraints are only weakly
aAected, as the pressure and the temperature for the two
models remain the same.

First we studied the mean-square displacements of
diAerent monomers, as illustrated in the inset of Fig. 1.
This motion can be directly studied by neutron spin-echo
experiments [11]. We monitor the motion of the end
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FIG. l. Mean-square displacement of the chain ends (plot

a), middle monomers (b), and cross-links (c) for the two mono-
mer potentials given by Eq. (l) (open circles) and Eq. (3) (tri-
angles) for the 400l50 system.

5.0

monomers and the middle monomers (actually the three
innermost ones) of the original chains, and the cross-
linked monomers which belong to the infinite cluster.
Figure 1 shows the mean-square displacements,

gq(t) =(j[r;(t)—R, (t)] —[r;(0) —R, (0)]j ) . (4)

R, is the center of mass of the percolating network and
i denotes an end, middle, or cross-linked monomer. For
short times there is no diA'erence between the two poten-
tials, showing that the monomeric friction is identical.
For short times the displacement gq(t) follows the Rouse
t ' law. However, for longer times a significant slowing
down occurs for both cases. Comparing these results to
our work on melts, it is clear that the crossover to the pla-
teau is extremely slow. Note that the Rouse relaxation
time z~ of a chain in the free melt for subchains of
A,, =9 is only 120z, while for N=50, zz=&0= 3700z.
g2(t) for the inner monomers of a free chain of length 50
in a melt at z&=~0 is approximately 40o, while for the
largest times (r =30000z) we can follow the system,
gz(t) =25o =10RG(N, ) and extrapolates to a slightly
larger value for the middle monomers of the chains in-
teracting via the LJ potential. The slowing down is simi-
lar for both potentials. The values of g2(r) for both po-
tentials start to deviate at t = 100z -400z, which is
slightly larger than the Rouse time of the average strand
length. For longer times, the contribution from chain
crossing is relevant. A similar but little less pronounced
separation occurs for the cross-links where gi(t) for the
cross-links is already greater than 7RG(N, ). These re-
sults are in clear contrast with the classical picture of
rubbers [2]. The dangling ends show a much weaker
eff'ect. The ends are too short to display the dominance of
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the slow retraction of the dangling strands and the relax-
ation of the ends cannot explain the extremely slow dy-
namics as suggested by Curro and Pincus [12]. The dis-
tribution of strand lengths and topology dominate the re-
laxational properties, even though N, = 4 N, . This is
also seen very clearly in the single-chain dynamic struc-
ture function S(q, t),

S'(q, t) = g exp[iq [r~(t) —r;(0)]l
ij =1,N lql

(5)
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where i,j run over all monomers of a given chain. The
index ~qI denotes that the data are averaged over the
orientations of q. Figure 2 gives a Rouse plot of
S(q, t)/S(q, 0) vs —,

'
q Jt For. Rouse chains the data

should fall on a single curve, where the slope directly re-
lates to the monomer friction as found for a melt of free
chains (dashed line in Fig. 2). Here we see strong varia-
tions from very early times, displaying the slowing down
and the efTect of the topology. The data decay towards a
plateau value, which should correspond to the volume the
monomers of the chain can explore. Using this analogy
to the reptation model, the tube diameter d~ is between
9o (q =0.4) and 7.7o (q =0.8), roughly the diameter of
the chains. However, it is important to note that this
efTect is very dif5cult to observe experimentally for the
very long times involved. Indeed, a Rouse plot of recent
neutron spin-echo data of the motion of the cross-links
does not display significant deviations from a single curve
[1 ll.

The importance of the topology becomes even more
pronounced for the plateau modulus G, which is mea-

sured by shear experiment, extrapolated to zero shear.
G describes the memory of the system and is directly re-
lated to the length of elastically active strands in the sys-
tem. Following Pearson and Graessley [13], G can be
written as the sum of two terms,

G = [(v —Itp)I/VlkBT+ T,Gtv, (6)

where V is the total volume of the system. The first term
is the entropic contribution. Here v is the number of
elastically active strands, p is the number of elastically
active cross-links, and h is an empirical parameter,
0 ~ h ~ 1. h = 1 corresponds to the phantom network
model while h =0 corresponds to the affine model. Using
the standard percolation notation, v and p correspond to
the strands and cross-links of the backbone of the per-
colating cluster, originating from the assumption that
each strand participates equally in sustaining the stress of
the system. The second contribution to G, T,Gz, is the
trapping contribution due to the noncrossability of the
chains. GN is the melt plateau modulus for the un-cross-
linked system and T, the trapping factor, which depends
only on the gel fraction Pg [13]. Since Gg =0 for chains
of length N=50, the trapping factor is expected to be
zero. The first contribution was determined by a detailed
analysis of the infinite cluster. The average of five small-
er 50/50 systems and the large 400/50 system agree
within a few percent and give (v —p)ktt T/V =0.013
~ 0.001 for the phantom model and vktt T/V =0.034
~0.001 for the affine model. In the affine model, G is

determined solely from the number of monomers which
are elastically active. G can also be written as G
=p*kaT/N, tt, where N, tt is the effective elastic strand
length and p* is the density of monomers supporting
stress in the system. Including only those monomers
which are elastically active (p* =0.37), we find N a. = 1 l.

By using two difTerent potentials we can estimate the
contributions of the two terms in Eq. (5) separately under
excluded volume conditions. To calculate G we return
to the chain structure of the system. Following the stan-
dard theories for polymer melts [14], the time-dependent
modulus of the system can be calculated from the Rouse
eigenrnodes of the chains. With Xt (t) being the pth
mode and A„(t) =(X~(t)X~(0))/(X~), the autocorrela-
tion function of the pth mode of the modulus is given by

(7)
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FIG. 2. Dynamic structure function S(q, t)/S(q, 0) vs

—,
' q'Jt for the original chains for the 50/50 and 400/50 systems

using the LJ interaction, Eq. (l), for (curve a) q =0.4, (b) 0.5,
(c) 0.6, and (d) 0.8. The data for the 400/50 system go to long
times. The dashed line is the Rouse result for a system of free
chains of length N =50 [41.

This relation should hold in a melt for chains of many en-
tanglement lengths. Here, however, the original chains
consist of only a few strands and a large fraction of
monotners are in dangling ends (=46%). The calcula-
tion of G(t) directly from the original, short chains leads
to an artificially small value for G =G(t ~). To
overcome this di%culty we constructed chains which
belonged to the infinite cluster with the condition that no
part of the constructed chain contained a dangling end.

3533



VOLUME 67, NUMBER 25 PHYSICAL REVIEW LETTERS 16 DECEMBER 1991

0.10

0.08

0.06
0

0.04

0.02

0.00 l

2000 4000 6000
l

8000 10000

Iggg OIISEg g%ggSESQSglgl lg gJg

contributions from the chain trapping can explicitly be
extracted. We found that the standard division of 6
into a phantom or a%ne network part and a trapping part
incorrectly estimates the importance of the chain topolo-
gy for the cross-linking density employed here. We are
presently extending this study to diAerent cross-linking
densities as well as to longer chains, where the eAect of
dangling ends is reduced.
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FIG. 3. Time-dependent modulus G(t) for the original
chains and the constructed chains for the two potentials. Re-
sults for the original chains are given in the lower three curves
for the 400/50 system for the LJ (O) and cosine ( x) potentials
and for the 50/50 system for the L3 potential (Q). The upper
two curves show the results for the constructed chains for the
400/50 system for the LJ (R) and cosine (rj) potentials.

We built chains of lengths 50 and 100. Within our error
bars we found no difference in G(t) for the two cases,
which are shown in Fig. 3. As expected, the original
chains for both potentials give a value of the plateau
modulus which is too small. From the constructed chains
we find a clear asymptotic plateau modulus for both
cases, GLj =0.040 ~0.002 for the L3 potential and G,„
=0.031+ 0.002 for the cosine potential. This shows that
none of the classical models describe the data very well.
Even the aftine model, which is expected to give an upper
limit, underestimates G, while the cosine potential mar-
ginally agrees with G . Obviously, the excluded volume
constraint and the noncrossability of the chains are the
reasons for this deviation. This suggests that even though
the original chain length N is relatively short, some en-
tanglements are trapped by the cross-links and contribute
to G'.

To summarize, in this paper we have presented the first
results in an extensive set of simulations of polymer net-
works. Using two diAerent interaction potentials, the
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