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Fluctuations and Transport in a Stirred Fluid with a Mean Gradient
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The effective thermal diffusivity D* and the probability distribution of temperature fluctuations are
measured in a stirred fluid across which a temperature gradient is maintained. A distinct mixing transi-
tion is observed for D* as a function of Reynolds number R. Above the transition, the distribution is
strongly non-Gaussian and approaches an exponential exp(—|5T|/B&), where B is the local temperature

gradient and & the correlation length.

PACS numbers: 47.25.Jn, 05.40.+j

Enhanced transport properties are among the basic
characteristics of turbulent flows. Several recent experi-
ments have provided detailed measurements for the trans-
port of heat and angular momentum in situations where
these quantities are dynamically active, for example, in
thermal convection [1] and Taylor-Couette flow [2]. It is
equally interesting to consider the passive transport of
scalar quantities such as impurity concentration or heat
in the presence of gradients of these quantities. The con-
cept of an effective or eddy diffusivity is often employed
to describe the enhancement. Its value is roughly of the
order of &y V, where &y is a typical eddy size or velocity
correlation length, and V is the rms velocity. This quanti-
ty can be many orders of magnitude larger than the
molecular diffusivity for material or thermal energy. The
subject of stirring and mixing in fluids that are not neces-
sarily turbulent has had a renaissance due in part to an
appreciation of its conceptual connection to chaotic dy-
namics [3].

The fluctuations of the local temperature or concentra-
tion contain considerable information about both dynam-
ics and transport processes. Fluctuations of local velocity
differences in turbulent flows are known to be non-
Gaussian, a reflection of the phenomenon of intermitten-
cy [4]. Recently Pumir, Shraiman, and Siggia [5] pro-
posed a simplified model of the random advection of a
passive scalar in a closed volume across which a steady
gradient B is maintained, and which is stirred with a ve-
locity correlation length & much less than the size L of
the system. Their model, which was stimulated by earlier
observations [1] of exponential probability distributions
in the case of active thermal convection, leads to the pre-
diction that exponential tails will occur in the probability
distribution function (PDF) of the passive scalar as well,
rather than the Gaussians that might have been expected
for that case. The extended tails, with an expected decay
constant of about (8&,) ~!, arise from the fact that fluid
at a given location comes from other locations where the
local mean value is systematically larger or smaller.
Gaussian distributions are expected (based on numerical
simulations) for weaker mixing, and complex nonmono-
tonic distributions are predicted when the parameter
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Ev/L is not small, so that fluid from the boundaries
reaches the measurement location with little mixing. The
model indicates that it is not necessary to look at gra-
dients or differences to detect non-Gaussian behavior, and
that strong turbulence is not required.

The model of Ref. [5] is a phenomenological model of
mixing and is not systematically derived from the hydro-
dynamic equations. However, the prediction of exponen-
tial tails for passive scalar transport is supported by ear-
lier [6] and recent [7] numerical simulations. The prob-
lem of predicting passive transport coefficients and statis-
tics of fluctuations is surprisingly complicated mathemat-
ically, because the large scales relevant to bulk transport
are affected by a wide range of smaller scales, as has been
pointed out in theoretical studies of model systems by
Avellaneda and Majda [8]. Other approaches to passive
scalars have been discussed [9], and mechanisms different
from that of Ref. [5] could be relevant [10]. Thus, it is
desirable to determine experimentally whether and when
exponential tails actually occur for passive transport.

In this paper, we report experimental studies of both
the effective thermal diffusivity and the statistical fluctua-
tions of the temperature field in a stirred fluid with a
steady (but small) temperature gradient. The system
(Fig. 1) is a closed box 7.5 cm deep constructed of Plex-
iglas, with horizontal interior dimensions L =12.5 cm
(parallel to the temperature gradient) and 25 cm. The
fluid (water and water-glycerol mixtures) is mixed by a
rigid oscillating grid formed by a hexagonal array of
holes (diameter d =0.48 cm) in a sheet of Plexiglas 0.3
cm thick. If we take d as an estimate of the characteris-
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FIG. 1. Sketch of the apparatus showing the oscillating grid
and temperature-control baths.
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tic scale £y of the “random” part of the velocity field,
then the parameter (£,/L)? is 0.037. The grid has negli-
gible thermal diffusivity compared to that of the stirred
fluid, and oscillates with periods 0.5-10 s through the
center 40% of the fluid depth.

Copper plates 0.3 cm thick separate the active fluid
from adjacent temperature-controlled thermal baths.
The applied temperature difference across the entire cell
is typically 3 K, a value sufficiently small that induced
thermal convection is insignificant in comparison to the
flows produced by active stirring. Temperature stability
better than 0.01 K even in the presence of a large heat
flux is typically obtained, and is necessary because the
gradients in the interior are small, typically 0.03-0.1
K/cm.

Local temperatures and temperature differences are
measured by small thermistor probes of diameter 0.05
cm, whose frequency response is estimated to be about 50
Hz. This bandwidth is more than sufficient for the flows
considered. Measurements are made along a line parallel
to the temperature gradient and typically 5 mm below the
lowest point of the oscillating grid.

We base the Reynolds number R on the grid hole di-
ameter d and the maximum velocity of the fluid through
the holes. The range 100 < R <6000 has been explored.
Visualization using anisotropic particles indicates that for
R > 1000 the turbulence is fairly well developed, with
scales considerably smaller than 4 being excited. The
turbulent fluctuations fill the cell, though they are some-
what attenuated near the top and bottom. An impurity
introduction near one wall of the cell soon forms a front
that broadens gradually, with times of the order of 100 s
being required to mix uniformly across the cell. Some ve-
locity measurements are obtained by laser Doppler velo-
cimetry. While the maximum vertical velocity can be as
large as 50 cm/s at R =5000, the rms horizontal velocity
is much smaller, about ¥ =1.5 cm/s.

We begin by describing the behavior of the effective
thermal diffusivity D* =K*/pc, where the effective
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FIG. 2. Effective thermal diffusivity D* as a function of
Reynolds number R, showing a rapid rise or “mixing transition”
as the turbulent cascade develops, and a slow growth for higher
R.
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thermal conductivity K* is obtained from the ratio of the
total measured heat flux F to the /ocal temperature gra-
dient, p is the density, and ¢ is the heat capacity. This
quantity is shown as a function of R in Fig. 2. It reveals
a gradual rise at “low” R and a rapid rise starting near
R =107; this is a reflection of the corresponding behavior
of VT, which declines rapidly over the same range. For
water at R =5000, the enhancement factor of the thermal
diffusivity is approximately 103. Typical values of D*
above the mixing transition are consistent with Vd. For
higher R, D* continues to rise, perhaps linearly, but the
accuracy and the range in R of our present experiments
are not sufficient to define this dependence precisely.

A nondimensional heat flux or Nusselt number Nu
=F/Fnd may be defined by the ratio of the turbulent
and conductive fluxes. This quantity shows a much
simpler smooth power-law increase that is well approxi-
mated by the expression N =0.32R %%4*005 gyer the en-
tire range 500 < R <6000. However, it is primarily
determined by the thickness of the boundary layers at the
hot and cold surfaces, and is not a bulk property.

The temperature fluctuations are usefully character-
ized by the spatial correlation function Cr(r)
=(8T(r)8T(0))/{(6T)?), which is shown in Fig. 3. It is
well approximated as an exponential with a correlation
length £7=8 mm at R =3700. We are not able to mea-
sure &y directly, though we estimate it to be of the order
of the grid hole diameter d. Thus, the correlation lengths
for velocity and temperature are comparable.

Typical probability distributions for temperature fluc-
tuations are shown in Fig. 4 for R =600 (below the mix-
ing transition) and R =3700 (above the mixing transi-
tion). The fluctuations are nondimensionalized by the
standard deviation o (even when the distributions are not
Gaussian). The distribution shown in Fig. 4(a) is ade-
quately fitted by a Gaussian, while that in 4(b) has well-
defined tails that are fitted much better by exponentials.
In fact, the observed fluctuations at 67/c =4 are more
probable than those predicted by a Gaussian with the
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FIG. 3. Spatial correlation function Cr(r) of the tempera-
ture field, showing roughly exponential decay in the turbulent
regime at R =3700.
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FIG. 4. Temperature distributions (a) at R=600, with a
Gaussian fit, and (b) at R =3700, with an exponential fit. (c)
A compressed time series corresponding to (b) showing fre-
quent large fluctuations.

same variance as the data by a factor of 13. A time
series corresponding to Fig. 4(b), showing large fluctua-
tions from the mean, is shown in Fig. 4(c).

The temperature gradient B8 remains constant over a
substantial distance (corresponding to at least 100), as
shown in Fig. 5. The inverse decay constant y ' of the
exponential is predicted in Ref. [5] to be of order B¢y
(=0.026 K, if we take &y =d). The observed value of
0.029 K is consistent with this prediction.

To characterize the extent of non-Gaussian behavior as
a function of R, we measured the kurtosis ((§7)%)/
((8T)??, which is 3 for a Gaussian distribution and 6 for
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FIG. 5. Mean temperature profile for R=3700, showing
linearity over a distance corresponding to at least 10o, where
0=0.042 K is the standard deviation of the distribution of Fig.
4(b).

an exponential distribution extending to the center. The
observed values, shown in Fig. 6, are consistent with 3 at
low R, and rise steadily to the range 5-6 for R = 4000.
The scatter in the kurtosis is somewhat larger than one
might expect. The distributions are also sometimes
skewed by as much as 10%, and the degree of rounding at
the top of the distribution varies. These variations may
arise from slight drifts in the temperature control or envi-
ronment during the runs, but are not sufficiently serious
to mask the clear trend toward exponential distributions
above the mixing transition.

We confirmed by using glycerol-water mixtures that
the distributions do not vary significantly for a factor of 5
increase in Prandtl number v/k, where v is the kinematic
viscosity and x the thermal diffusivity. (However, only
the range R < 1000 was accessible in that case.) Finally,
the distributions were approximately Gaussian when &y/L
was increased to 0.15 by changing the grid, up to R
=16000.

Additional experiments were conducted in a different
geometry, in which disordered capillary waves induced by
the Faraday instability produced the mixing instead of an
oscillating grid. This flow was harder to characterize in
detail, but some evidence for exponential distributions
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FIG. 6. Kurtosis as a function of R. This quantity would be
3 for Gaussian distributions and 6 for exponentials.

3509



VOLUME 67, NUMBER 25

PHYSICAL REVIEW LETTERS

16 DECEMBER 1991

was also found in this case for sufficiently strong mixing.

In summary, we have studied both the effective or
“eddy” diffusivity and the statistics of local fluctuations
of a passive scalar in the presence of a linear mean
profile. We found clear evidence for exponential tails in
the probability distributions for strong mixing, as sug-
gested by Pumir, Shraiman, and Siggia [5], and Gaussian
behavior for weaker mixing. The fact that the exponen-
tials can extend nearly to the center of the distribution, as
indicated by values of the kurtosis approaching 6, was not
anticipated theoretically. We note that the mixing in our
experiment was always too strong to produce nonmono-
tonic distributions with spikes at the boundary tempera-
tures, but bimodal distributions have been seen in mixing
layers [11].

The extent to which the statistics of the velocity fluc-
tuations or the anisotropy of the velocity field might
affect the scalar distributions remains to be established.
It would also be of interest to extend these measurements
to higher Reynolds numbers.
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