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We examine the kinematics of quantum vortex configurations in three-dimensional space for an ideal
incompressible fluid. The permitted quantum configurations are shown to be surfaces of vorticity,
characterized topologically not only by their knottedness, but also by additional global properties such as
twists and holes. Our results, obtained by representing an infinite-dimensional group of diff'eo-

morphisms, contradict conclusions reached by approximating the infinite-dimensional system with finite-
ly many degrees of freedom.

PACS numbers: 47. 15.—x, 02.20.+b

It is of interest to understand what kinds of extended
classical objects can be quantized. Here we investigate
this question in the framework of an ideal incompressible
fluid [1]. A classical phase-space description of such a
fluid [2] can be given in terms of its momentum density
A(x), or equivalently its vorticity density Q(x) =(I/
m)(VX A)(x), where m is a unit mass. However, the un-
certainty principle does not permit quantization of every
classically allowed vorticity distribution. A "quantum
vortex configuration" is a distribution of classical vortici-
ty for which a corresponding quantum version exists, i.e.,
for which the appropriate classical observables are
mapped consistently to self-adjoint operators in a Hilbert
space.

Extending previous work [3], we analyze here the
quantum vortex configurations permitted in three-dimen-
sional space. Our main result is that two-dimensional ob-
jects such as ribbons and tubes of vorticity have quantum
descriptions (subject to the construction of appropriate
measures), but one-dimensional vortex filaments do not.
Such ribbons or tubes can close on themselves or extend
to infinity. In addition to the possibility of their being
knotted, they can have global, topological structures such
as twists and holes —which lead to quantum properties
that cannot occur for filaments. We thus suggest that
fundamental, extended quantum configurations are likely
to be tubes or ribbons rather than one-dimensional
strings, a conjecture with physically important implica-
tions.

Our results follow from the construction of representa-
tions of an infinite-dimensional algebra and group associ-
ated with the dynamical variables of the fluid, utilizing
the method of geometric quantization on coadjoint orbits
[4]. To obtain a correct kinematic description of quan-
tum vortex configurations associated with the classical
Euler equations, it is necessary to incorporate an infinity
of degrees of freedom into the quantum theory. When
such systems are approximated quasiclassically, or
modeled using only finitely many degrees of freedom,
qualitatively different conclusions are reached —which is

why our findings differ from those of others [51.

Quantization begins with the classical configuration
space. For an ideal, incompressible Auid in R, a classical
configuration is given by a volume preserv-ing diffeo
morphism of R, i.e. , a smooth (C ), smoothly invertible
mapping p from R to itself whose Jacobian is 1. We can
think of p(x) as giving the position of a fluid element
which, in a fixed reference configuration, is at x. We re-
strict ourselves to diffeomorphisms describing a fluid sta-
tionary at infinity, i.e., P(x) x as ~x~ ~. The set of
all such dilfeomorphisms is an infinite-dimensional mani-
fold, and forms a group G =sDiff(R ) under the opera
tion of composition (the prefix "s" stands for "special, "
reflecting the incompressibility condition). Since the
physics of the Auid is independent of the choice of coordi-
nates, and the elements of G are coordinate transforma-
tions, G acts on itself (the configuration-space manifold)
as a symmetry group. Thus, as with finite-dimensional
symmetry groups, unitarily inequivalent representations
of G describe distinct quantum systems associated with
such a Auid.

The Lie algebra g of G is the set of smooth, divergence-
less vector fields v on R vanishing at infinity, with the
usual Lie bracket (for v~, v2 6 g) [v~, vq] =(v~ V)vq
—(v2 V)v~. Here v has the interpretation of a velocity
field. For the algebra to close under the bracket opera-
tion, the velocity fields must be C, and are thus only an
idealized subset of the possible velocity distributions; they
do not describe discontinuities in the Auid s motion. Ele-
ments of g belong to the tangent space of G at the identi-
ty. Momentum density fields enter as elements of the co
tangent space of G; they belong to the dual space g' of g.
An element of g' is a continuous, linear mapping from g
to R—i.e., a generalized vector field in R . For v E g and
A E g', we use the notation (A, v&= fA(x). v(x)d x to
express the value of A on the element v. Now one can
enlarge the set of physically possible velocity fields to in-
clude those proportional to the momentum densities,
which embody discontinuities or singularities. Thus, this
framework for classical hydrodynamics [2] allows one to
begin with smooth configurations, and obtain more singu-
lar elements of the phase space via the cotangent bundle.
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The original velocity fields have the status of /est Iunc
tions, with respect to which the more singular momentum
density fields are evaluated. Incorporation of a larger set
of velocities in this way has no analog for systems with

finitely many degrees of freedom, where the tangent
space and its dual are finite dimensional and isomorphic.

In the quantized theory, each v C g is to be represented
by a self-adjoint operator J(v) in a Hilbert space, which
is interpreted as the quantum-mechanical momentum
density 3(x) averaged with the original, smooth velocity
field. Such a representation exponentiates to a corre-
sponding unitary representation of 6. Representations of
diITeomorphism groups and algebras of vector fields have
been previously proposed as providing a fundamental
unification and classification of quantum systems [6],
leading in two dimensions to anyon statistics [7]. In the
present context, diffeomorphism group representations
oAer not only a description of intermediate statistics for
vortex configurations, but also a rigorous conclusion
about the types of configurations that are quantum
mechanically permitted.

We follow the method of geometric quantization to ob-
tain representations of the group and the algebra. First,
one characterizes satisfactory orbits in the coadjoint rep-
resentation of 6. The coadjoint orbit serves as a reduced
classical phose space [2]. When the Hamiltonian re-

spects the group symmetry, the phase-space trajectory of
the initial-value problem remains in the orbit, constrain-
ing the classical motion to particular values for (possibly
infinitely many) conserved quantities. To be suitable for
quantization, a coadjoint orbit must have several proper-
ties. It most admit a polarization, which means that the
dynamical variables can be divided into two complemen-
tary sets, where information about one set is lost when

measurements are made on the other set. The existence
of a polarization thus expresses the uncertainty principle.
It must also obey an integrality condition which ensures
that an appropriate periodic boundary condition is possi-
ble, defining domains of wave functions in Hilbert space
for the operator observables in the resulting quantum
theory. Finally, a suitable orbit (or union of uncountably
many orbits) must carry a measure, quasi-invariant un-

der the diAeomorphism group action. This means that it
is possible to calculate the expected values of physical ob-
servables with respect to underlying probabilities. On
such orbits, one can construct continuous, unitary, irre-
ducible representations of t, for which all the desired
self-adjoint operators can be recovered as generators of
unitary subgroups [6]. Elements of an orbit correspond
to phase-space configurations; a foliation of the orbit
(given by the polarization) yields the quantum con-
figuration space [4].

We next construct a polarization for coadjoint orbits of
G =sDiff(R ) containing ribbon and tube configurations
of vorticity, and explain why none exists for orbits con-
taining one-dimensional filament configurations. This ex-

tends our earlier result [3] that in R polarizations exist
for orbits containing filaments of vorticity, but not for
pure point vortices.

Since v is divergenceless, v=VxZ, where Z is a (co-
variant) vector-valued stream function on R, defined up
to addition of an arbitrary gradient. We write g„when
we want to emphasize the dependence of g on v. Now

„A(x) v(x)d'x =„A(x) (VxZ)(x)d'x

(AxZ). nd's

+„(»&A) (x) Z(x) d 'x,
where the area integral is taken around the surface of a
closed sphere of very large diameter. Because v 0 rap-
idly as ~x~ ~, we can choose Z so that Z 0 rapidly as

~x~ . This allows us to drop the surface term, writing
(A, v) =f 0(x) z(x)d x =(Q,z). We see that the value
of A as an element of g' depends only on its curl, the
(contravariant) vorticity density 0 (having set m =I).
Note that the surface term vanishes as long as g 0
suSciently rapidly, even when A itself does not vanish at
infinity. It is useful to note that Vx (v~ xvq) = [v~, v2], so
that one choice is g~„,,„,~ =vl xv2.

The adjoint representation Adv of g is defined so that
for all v~, v2 C g, (Adv~)vq=[vl, vq]. Then the adjoint
representation of G on g is given, for p C G, by
v (Adlp)v [J~—Iv] & p, where J denotes the matrix of
derivatives; i.e., J&=[J&]/ =tlkp'. Correspondingly, the
action of p on Z is given by Z'=(Ad&)Z=[Jq] [Zo(t],
where the superscript T denotes the transpose. The coad-
joint representation specifies the action of 6 in the dual
space g'. For A E g', we write A' =PA, where (A', v)
=(A, Ad(p ')v). Then A'= [J&] [A&/]. Finally, the
coadjoint representation may also be written in terms of
the action of 6 on the vorticity 0; one obtains 0'
=([J&-i]0)&p. A coadjoint orbit is thus obtained by
considering a particular vorticity distribution 0(x), and
acting on it with all the diffeomorphisms in sDilT(R ).

We first consider an infinite ribbon of vorticity, on a
surface bounded by two lanes and extending to infinity in

both z directions. This element of g' is given by the sur-
face Z in R, together with a (singular) vorticity density
distribution y(s) tangent to Z (for s E Z) and tangential
on the boundary of Z. That is, 0 is defined by
(Q,Z) =fz y(s). Z(s)d s; and we identify 0 with the pair
(Z, y). The ribbon then consists of a family of one-
dimensional "lines of vorticity. " Let I be any smooth
curve crossing the ribbon in a transverse direction, from
one bounding line to the other. The total vorticity of the
ribbon is given by 0&,&

=fr dl. (n x y), where n is the unit
normal to Z on I; Q„i is independent of I (and thus a
constant along the ribbon). In the coadjoint representa-
tion of sDiff(R ), the action of a diffeomorphism p on
0 = (Z, y) is to give a transformed surface and a new vor-
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ticity density tangent to the surface: Writing (Z', y')
=i'(Z, y), we obtain Z'=[s'=P '(s)~s E Zj, and y'(s')
=(n'(s'). [[J&—in] oilij(s')) j([Jq —i] y) oPj(s'), where n' is
the unit normal to Z' at s' (the first factor here is just the
Jacobian of the area element d s with respect to d s').
The set of such vortex ribbons (fixed at infinity) forms a
coadjoint orbit for each value of Ot

For specificity consider the special case Op=(Zp, yp),
where Zp = [(x,y, z) C R ~0 & x & I, y =pj and yp(s)= fpz. The stability group K&, of Qp consists of those
diAeomorphisms which not only preserve Zp as a set, but
also preserve individual lines of vorticity within Zp, i.e.,
with (x',y', z') =p(x,y, z), we have p E K„, if for
(x,y, z) C Zp, x'=x and y'=0. The Lie algebra k&, of
K Qp consists of vector fields which on Xp are not on ly
tangential to Zp, but are in the direction of yp. To obtain
a polarization, we now relax the constraint that the
diff'eomorphisms preserve the lines of vorticity, so that the
only restriction on p is that it preserve Zp as a set. Let-
ting H p, be this subgroup of sDiff(R ), the corresponding
Lie algebra h &, consists of vector fields which are tangen-
tial to Zp (on Zp), as well as tangential to its boundary
lines x =y =0 and x = 1, y =0. To check that this is a
polarization, one must verify the condition that
(Op, gl„, „,l) =0 for all v~, v2 E hp, . But this holds because
Zl„, „,l =v~ xv2, which on Zp is orthogonal to Zp (and
hence to yp). Now we can define a corresponding charac-
ter tp on H„,. Let p,

" (for t C R) be the one-parameter
group of volume-preserving diffeomorphisms generated
by a velocity field v E h&„m must satisfy

(d/dt ) in[to(y,")]=i(np, Z„) .

Let I p be any line of vorticity in Xp, and let I be a line
at infinity parallel to the z axis and not in the plane of the
ribbon. Consider a surface Sp bounded by I p and I

Let V(t) be the signed volume of the region swept out by

p,"Sp as t' varies from 0 to t and the surface moves from
Sp to Pl"Sp. The volume is finite because p(x) x rapid-
ly at infinity. Furthermore, V(t) is independent of I p,I, and Sp because p is a volume-preserving liow. Fi-
nally, from Stokes's integral formula, we obtain
yp(d/dt) V(t) =&Op, g, ). Then the desired character sat-
isfies tp(p,")=exp[iypV(t)]. Because the geometric con-
struction of V(t) generalizes to any P E H„„rp extends
(as a continuous group homomorphism) from the one-
parameter Aows to all of H&,. The explicit construction
of a character means that the integrality condition holds
for this coadjoint orbit of G (but see the discussion below
of quantization of vorticity). Thus, for ribbons of vortici-

ty, we have completed all but the difficult step of obtain-
ing a quasi-invariant measure for the group action—which is beyond the scope of the present Letter.

Having obtained 0&„ the configuration space 6, is the
quotient space G/H p„ its elements are the ribbons Z with
total vorticity Qt, t, but without the information as to how
the vorticity is distributed. The uncertainty principle re-

quires that y cannot be measured simultaneously with X,.
The character m of H &, now induces a unitary represen-
tation of G, leading to the self-adjoint operators J(v) act-
ing in the Hilbert space of square-integrable functions on

Parallel arguments apply when the side edges of the
ribbon are identified, when the ribbon joins with itself
rather than extending to infinity, or when the ribbon
separates into two, rejoins, and so on. Thus a polariza-
tion also exists for vortex tubes, toruses, ribbons with
holes, etc.

The integrality condition is automatically satisfied in
the above example, because our diffeomorphisms become
trivial at infinity. Rotation of the infinite ribbon by 2z
leaves a "twist" in the diAeomorphism implementing the
rotation, so that the requirement of integrality imposes no
new constraint. But if g is taken to include generators of
global rotations, integrality becomes nontrivial. For the
infinite vortex ribbon in a large but finite volume V, the
integrality condition takes the form VAt t 2+N, where
lV is an integer. (In the preceding we avoided well-known
divergences proportional to the volume by working with
local densities as the dynamical variables. ) This is
equivalent to the Feynman-Onsager condition [8] when
tc=gv dl =(V/m) Qi, i, in the proper physical units, with
[J(v~),J(v2)l = —ih J([v~,v2]), this results in the quanti-
zation of vorticity K =(h/m)cV.

Two-dimensional distributions of vorticity embedded in
three dimensions have field degrees of freedom distinct
from one-dimensional filaments. There are also discrete
degrees of freedom associated with the topology of these
vortex configurations: For instance, a closed ribbon and a
twisted closed ribbon of vorticity belong to different coad-
joint orbits, and lead to unitarily inequivalent representa-
tions of sDiff(R ). Such configurations can be dis-
tinguished by assigning to them an integer counting the
number of twists. The additional degrees of freedom
should in principle lead to observable eA'ects —for exam-
ple, in the value of the specific heat a Auid whose excita-
tions include twisted and untwisted ribbons of vorticity.

We next show that a coadjoint orbit consisting of pure
(one-dimensional) vortex filaments in three-dimensional
space has no polarization. Such a filament is uniquely
characterized by an unparametrized curve I and the
magnitude of the (singular) vorticity density y with sup-
port on I, and is defined by (Qr, Z„) =y frds. g„. The
algebra of the little group k[- consists of the divergence-
less vector fields which on I are tangent to I . The polar-
ization algebra h[- must be a proper subalgebra of g
which contains kr, and satisfy the condition (I,g~h, h, i)
=0 for h~, h2 e hi-. This implies that frds (h~ xh2) =0.
The latter condition can be satisfied —for example, by let-
ting h]-- contain vector fields which at each point s E I
take values in a plane formed by I and a single direction
perpendicular to I at s. The cross product of two such
vectors remains perpendicular to I. However, such vec-
tor fields cannot form a closed Lie subalgebra. To see

3501



VOLUME 67, NUMBER 25 PHYSICAL REVIEW LETTERS 16 DECEMBER 1991

this choose any v E h& with h g kr. There must be a
point p C I such that v(p) is not tangent to I . Because I

may be transformed by an element of 6, we may assume
without loss of generality that near p the filament is a
straight line in the z direction, and that v lies in the x-z
plane. Now for v' E k t- consider (at the point p )
y [v,v'] =v, t), t J'. But there is no restriction on the
derivatives of an element of k&, thus this quantity may be
nonzero, and [v,v'] will in general have a component in

the y direction at p. Thus the bracket leads to arbitrary
elements of g. Once one element of the polarization
group moves a point off the filament, composition with
the little group (which is not restricted off the filament)
leads to any group element. Thus polarizations for orbits
of vortex filaments do not exist. Introduction of a com-
plex structure on the coadjoint orbit cannot overcome this
fundamental difficulty. Penna and Spera [8], working in

the same framework as the present article, studied vortex
filament orbits for sDiff(R ). However, the results re-
ported here show that such orbits are not suitable for
quantization.

In the present framework, particular values for the
conserved quantities reduce the phase space to a coad-
joint orbit. When a polarization exists and integrality
holds, a representation of the full algebra is obtained. Al-
ternatively, one can attempt to work with fewer coordi-
nates from the outset [5]. For example, considering only
special linear transformations and translations of R, one
obtains a model studied recently by Leinaas and My-
rheim [7], which accommodates point vortices. Classical-
ly, sDiff(R ) also describes point vortices. However, the
approaches lead to fundamentally different results on the
quantum level —quantizing the finite-dimensional theory
allows quantum point vortices, but quantizing the full

theory does not. Thus qualitatively different results
emerge when an infinite number of degrees of freedom
are included. We also mention a result of Shishkov [5] in

which it was shown that an approximate description of
point vortices can be obtained by choosing the velocity
fields to belong to a certain orthonormal family. Howev-

er, the algebra of vector fields is satisfied only to first or-
der, and there is no representation of the diffeomorphism
group to which this is an approximation. Thus, for the
purpose of identifying which kinds of vortex config-
urations are possible in a quantum theory, a finite-
dimensional model or a quasiclassical approximate theory
may not be adequate.

In closing, we observe that establishing which orbits

are quantizable is not sufticient to ensure correct quanti-
zation. A very careful treatment of measures (or half-
forms) on the orbits is also required. We stress, however,
that surfaces of vorticity as described here are necessary;
the impossibility of quantizing the vortex filament is a
rigorous result.
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