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Axial-Charge Transitions in Heavy Nuclei and In-Medium EA'ective Chiral Lagrangians
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It is shown that the recently reported strong enhancement of the axial-charge matrix element in first-
forbidden P decay in heavy nuclei (A =205-212) can be simply explained in terms of an effective La-
grangian that incorporates approximate chiral and scale invariances of QCD. We suggest this as an evi-
dence for the scaling property of hadrons in dense medium as predicted by eA'ective chiral Lagrangians
that are consistent with the symmetries of QCD.

PACS numbers: 23.40.Hc, 11.40.Fy, 21.65.+f, 27.80.+w

In a recent Letter, Warburton [1] analyzed first-for-
bidden P decay in A =205-212 nuclei and arrived at an
intriguing result, that the axial-charge matrix element in

heavy nuclei is enhanced over the impulse approximation
by about 100%, with the extracted enhancement factor
being

eMpq =2.01 + 0.05,

m/v m (gj

Here the density dependence is indicated by the asterisk;
the symbols without asterisks denote values at zero densi-
ty. The f is a constant related to the pion-decay con-
stant and the subscripts on the masses label the hadrons
involved. (The cr is the effective scalar meson of mass
—560 MeV needed in nuclear physics. ) In establishing

where MEC denotes meson exchange currents. This is a
considerably stronger enhancement than what was antici-
pated theoretically in 1978 ( —50%%uo) [2] and calculated
more recently [3]. In this Letter, we offer a very simple
explanation of this large enhancement based on an in-

medium effective chiral Lagrangian [4] and the ex-
change-current operator derived therefrom along the line
developed in [2], which has recently been justified [5] by
means of the Weinberg expansion [6]. For the density
corresponding to that of nuclear matter, we predict

Our argument relies on two recent developments in im-

plementing chiral symmetry in nuclear physics: first, the
construction of an effective Lagrangian appropriate for
nonzero baryon density consistent with the symmetries of
QCD, and second, a consistent chiral expansion with a
given in-medium effective chiral Lagrangian. We start
with the first.

It was shown in [4] that incorporation of approximate
chiral and scale invariances of QCD leads to a chiral La-
grangian of low-energy hadrons in which masses of the
hadrons are universally scaled as a function of the matter
density p,

this scaling relation, implementing the trace anomaly of
QCD in effective chiral Lagrangians turns out to play a
crucial role [7]. The point is that in QCD, the divergence
of the dilatation current B„D" or, equivalently, the trace
of the energy-momentum tensor 0„" is—apart from the
mass term and its anomalous dimension term —equal to
—[P(g)/g]TrG„, G"', where G„, is the gluon field tensor.
This can be conveniently implemented by defining an
effective scalar field g,

Tr [G„,G" '] —g" . (3)

If we define, for any density, the condensate of the scalar
field as g~ =(0*~@~0*),then the scaling property of the
chiral Lagrangian dictates, at least at small density, a

prescribed dependence on the condensate in medium g+,
and the redefinition of the pion-decay constant by f*
=f,g+/go, combined with low-energy relations (e.g. ,

Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation,
Weinberg spectral-sum rule, etc.), leads immediately to

Eq. (2).
We note that within the scheme adopted in Ref. [4],

the pion —and Goldstone bosons in general —scale less

rapidly than (2): The scaling predicted at the tree order
is (m*/m ) =&(p). In fact, experiments indicate little
or no scaling of the pion mass in nuclear medium [8] at
least at low temperature. [At high temperature, the situ-
ation can be entirely different, the pion mass falling even
faster than (2) at temperatures reached in relativistic
heavy-ion collisions. See [8] for discussions on this mat-
ter. ] In this paper, we will assume that the pion mass
remains unmodified for the range of densities involved.

One can also make definite statements, using the same
argument, on the property of other constants of the chiral
theory (other than f ). One can readily see that at the
tree level of the effective chiral Lagrangian, the axial
coupling constant gz or, equivalently, the gauge coupling

gi/v/v of the vector mesons and the zA couPling g /vs

remain unchanged in medium. They are renormalized,
however, by loop corrections as we will elaborate later.

How to calculate the axial-charge transition matrix
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elements, given a chiral Lagrangian, was described in

Ref. [2]. It was recently shown [5] by means of the
Weinberg expansion [6] that to the leading order in

chiral expansion only one diagram involving a single
soft-pion exchange dominates the exchange axial current
amplitude, with short-ranged heavy-meson exchanges and
loop contributions suppressed by the higher order of the
chiral expansion parameter, justifying the hitherto ad hoc

notion of the "chiral filter" mechanism used in [2]. It is

appealing to consider this as a manifestation of a nonper-
turbative aspect of QCD. The upshot in the context of
the in-medium chiral Lagrangian is that we obtain pre-
cisely the same axial-charge one-body and two-body
operators as in [2] with the relevant hadron masses and
the pion-decay constant replaced by the in-medium
quantities. Thus we have

w,—=w,"' —+w,'-' —,
ho'' —= —gag r; (a; p—;/m~)6(x —x;)+g~ g r; (cr; —k/2m~)6(x —x;),

2

Wo-' —=, , g (r;xri) —[o; rS(x —x, )+cr, rS("x —x;)]Y(r),
87lm~f 'i &i

with

Y(r) = I+ 1
111'/'e

m r

where r =x; —x;, k is the momentum carried by the axial
current, and p is the initial momentum of the nucleon
making the transition. Note that in accordance with our
strategy of chiral expansion to the leading order [5], both

g~ and g /v/v appear unrenormalized in the axial-charge
density operator. Equation (4) is an extremely simple
In-medium realization of the chiral-expansion strategy.
We have not given a rigorous proof that this is the entire
story but we suggest that it is the dominant one, the va-

lidity of which could be easily subjected to further experi-
mental tests. Possible caveats to this result will be men-
tioned later.

The consequence of the above reasoning on axial-
charge transitions in nuclei [9] can be simply stated.
Denote the in-medium single-particle axial-charge matrix
element by M ] and the in-medium exchange-current ma-
trix element by M~, with the asterisk denoting dense
matter. Then to the extent that the pion mass remains
unchanged, we get

M( =N(p) M(, M2* =N(p) M2, (6)

.8 =M~/M ) . (8)

Although the operators in %' are defined for +=1, the
matrix elements could have hidden 4& dependence (i.e. ,

through the wave functions). We will ignore this in view

of the fact that the ratio 4' is quite insensitive to details
of nuclear models and also to nuclear masses [10,11]: It
ranges in all cases between 0.4 and 0.6. This range will

be denoted for convenience as %=0.5 ~0.1. Calcula-
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where the I] 2 without asterisks stand for quantities cal-
culated with &=1. Thus we predict for Warburton's ra-
tio t. ,

~ „,-=(M*, +M.*)/M, =e(p) '[I+e(p) '],
where

eMtc(p) =2.0~0.2 for p=po. (10)

This is the main prediction of the theory and agrees with
the experimental result (1). The result is only slightly
modified if the pion mass is taken to scale as J@every-
where in (4).

A comment is in order concerning the space component
of the axial current, in particular, the Gamow- Teller
operator g~r —m. It is stated above that the g~ does not
scale in the effective axial-charge operator. It is, howev-
er, known that the axial-vector coupling constant g~ in
Gamow- Teller transitions gets renormalized in nuclei
from its free-space value 1.26 to 1 in a rather precocious
way [13]. It may thus seem inconsistent to ignore this
modification in calculating the enhancement in the
single-particle axial-charge operator. This, however, is
not so. The point is that the renormalization of g~ should
be calculated explicitly with the in-medium Lagrangian
as a loop correction specifically for the Gamow Teller-
operator and must not be present in the mean field
modification that enters in the charge density operator
relevant to (6). One possible mechanism for the "ef-

tions with sophisticated wave functions seem to support
this insensitivity. This leaves the scaling factor @ as the
princi pal mechanism for density-dependent enhancement.
Strictly speaking, + is a parameter of the theory. In nu-
clear matter, it is clearly a constant, but in finite nuclei, it
may be problematic to define it accurately. In finite sys-
tems, it may be better to make a local-density approxima-
tion to it, in which case one would expect that the single-
particle operator in (4), involving a derivative, will be less
affected by density than the two-body operator. In any
event, we will take in this paper a @ defined for an aver-
age density. For light nuclei, we expect that &=1 and
hence e= 1.5 ~0.1, which is consistent with experiments
[12], for the range of %=0.5~0.1. For nuclear-matter
density, a reasonable value is

+(p = po) = 0.8 .

This gives, for % =0.5+ 0.1,
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fective" quenching of g~ (in Gamow-Teller transitions) is
the 6-hole contribution proposed a long time ago [14,15].
This belongs to a class of (density-dependent) loop
corrections. We suggest that the quenching of g~ to
about I in medium heavy nuclei is not a fundamental re
normalization that re/i'ects a vacuum change as it is for
(2), contrary to what was previously conjectured in [151:
We suspect that the observed quenching of gz is a fortui-
tous result involving an interplay between the h, resonance
and/or short-range interactions that figure at a higher or-
der in chiral expansion as defined in [5] and that should
not be confused with a "precocious approach" to the
Wigner-Weyl mode [16]. The same argument applies to
g q/v through the in-medium Goldberger-Treiman rela-
tion [15].

Our mechanism for the enhancement (1) is simple and

unambiguous enough to be testable by further experi-
ments. It is generally consistent with what is observed in

such nuclear processes as elastic K-nucleus scattering
[17] and proton-nucleus scattering [18] at several hun-
dred MeV and in the longitudinal and transverse response
functions in electron scattering off nuclei [19]. These are

admittedly indirect indications. A direct test of the
theory wi11 come from dedicated measurements of the
hadron properties in nuclear medium, such as in-medium
masses of the vector mesons, in heavy-ion collisions, or in

electron machines [20]. In the meantime, it is clearly
legitimate to ask what other mechanisms could explain
the observation (1). One immediate explanation suggest-
ed by Warburton [1] is the effect of quenched tensor
forces. Warburton notes that if the effective tensor force
in nuclei were weaker by 60% than that used in the
ana1ysis, the experimental data could be reconciled with

eMqq = 1.4. This is a respectable possibility. As suggest-
ed in [21], one consequence of the scaling masses is that
as density increases, the attraction in the tensor force in

the two-body nucleon-nucleon interaction may be consid-
erably weakened. This is almost inevitable from the point
of view of the effective Lagrangian of Ref. [4]. The ques-
tion, however, remains as to how this weakening will be
reAected in the effective tensor force in the G matrices. A
detailed calculation is needed to see what actually hap-
pens. The strategy adopted in our present work requires
that the 6 matrices used in shell-model calculations be
recalculated with the scaled masses. An initial attempt to
do just this was recently reported [22], but the calcula-
tion for the axial-charge transition is yet to be performed.
Our mechanism would clearly be endangered if the
tensor-force mechanism were to explain wholly the ob-
served enhancement. In any event, our scheme would
make sense only if the scaling (2) were used consistently
throughout the entire analysis including the extraction of
the enhancement factor e [11].

Another possibility is that hadron masses and coupling
constants scale in effect differently from ours. It is possi-
ble, for instance, with assumptions different from ours on
scaling and chiral properties of QCD, to define an ef-

fective Lagrangian that incorporates some of the loop
effects of our Lagrangian whi1e preserving certain aspects
of QCD symmetries. Our scheme relies on a minimal im-
plementation of chiral and scale invariances of QCD and
as such it is not impossible that it is lacking in some im-
portant quantum effects. This point was discussed re-
cently by Banerjee [23], who obtained results that differ
from ours in the way coupling constants scale. While we
question the validity of such an approach, it cannot be
ruled out ab initio. Which scheme is correct will have to
be settled by experiments.

Finally, it may be possible to start with an effective La-
grangian defined at zero density as in the standard ap-
proach and calculate medium effects, taking consistently
into account exchange-current and relativistic effects.
With a judicious choice of terms based on Ward identi-
ties, it may be possible to also explain the enhancement
(1). An approach of this type was considered in Ref.
[24]. The trouble with this, however, is that it involves
correction terms of large magnitude which tend to cancel
each other and it is not at all clear how to organize aII
the relevant terms. Ward identities would help but they
are in practice di%cult to implement. Furthermore, this
approach and ours are not necessarily at odds in their
physics cofltents. In fact, there may be a significant over-
lap between the two.

There is mounting evidence that nuclear processes,
strong or electroweak, are better described with the
scaled masses (2) in effective chiral Lagrangians [17-19].
Furthermore, implementing the running masses in the G
matrix does not seem to upset the previous success in
shell-model calculations [22]. This is highly nontrivial in
view of the nonlinearity involved in the G-matrix calcula-
tions. It was argued in [4] that the nuclear Hamiltonian
possesses an approximate scale invariance and the scaling
(2) factors out in many nuclear processes. There are,
however, cases where such factoring fails to occur as, e.g. ,
in spin-orbit interactions. The case presented here—which has the further merit of combining the scaling
property with chiral symmetry of QCD—is, despite its
seeming complexity, a particularly elegant one and pro-
vides yet additional evidence for the "swelled world" con-
cept of nuclear matter. If confirmed, this would consti-
tute significant progress in our understanding of nuclei
from a fundamental point of view. Extrapolated to an ex-
treme condition, say, high temperature or high density, it
could also provide valuable insight into the phase struc-
ture of the strongly interacting system relevant to relativ-
istic heavy-ion collisions and the early Universe. This ex-
citing possibility was recently suggested by Brown, Bethe,
and Pizzochero [25].
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