
VOLUME 67, NUMBER 25 PH YSICAL REVIEW LETTERS

Gauge Theory of the Virasoro Group

Y. M. Cho
Department of Physi cs, Seoul lV ational Unit ersity, Seoul l 5I -742, ICorea

(Received 30 July 1990)

16 DECEMBER 1991

A gauge theory of the Virasoro group is constructed as a theory of "internal" strings, and a spontane-
ous symmetry-breaking mechanism of the Virasoro group down to its Cartan subgroup is discussed. It is

shown that the mass spectrum of the gauge bosons after the symmetry breaking becomes that of a har-
monic oscillator. After a supersymmetric generalization, the theory could serve as a simple model for
the hadrons.

PACS numbers: I I.15.—q, I I. I 7.+y, 11.30.—j, 12.10.—g

It has long been recognized that the Virasoro group [I]
is the fundamental symmetry of the string theory [2].
This implies that any realistic four-dimensional field-
theoretic description of the string theory (before an inev-
itable symmetry breaking) is most likely to be formulated
as a gauge theory of the Virasoro group. So far, however,
such a gauge theory has not been available. The reason is

partly due to our lack of understanding of the representa-
tion of the infinite-dimensional group. The purpose of
this Letter is to construct a genuine gauge theory of the
Virasoro group which could serve as a realistic model for
the hadrons, and to discuss a spontaneous symmetry-
breaking mechanism of the theory. Remarkably, our re-
sult shows that the mass spectrum of the gauge bosons
after the symmetry breaking becomes that of a harmonic
oscillator. Specifically, the mass of the Hermitian gauge
fields A„k (k an integer) is shown to be gto~k~/2, where g
is the coupling constant and co is the symmetry-breaking
mass scale, which should be related to the string tension
in the real world.

Before we construct the desired gauge theory, however,
we need to know some basic facts about the representa-
tion of the Virasoro algebra. The representation most
widely discussed in the literature is the highest-weight
representation [3] based on the Verma module. Unfor-
tunately this representation is not very useful in con-
structing a gauge theory of the Virasoro group because
the gauge field (which must form an adjoint representa-
tion) does not belong to this representation. The repre-
sentation that we use in this Letter is a generalization of
the one introduced by Kaplansky [4], and also indepen-
dently by Feigin and Fuks [5]. To explain the generaliza-
tion of the Kaplansky-Feigin-Fuks (KFF) representation,
we first consider the Virasoro algebra without the central
extension,

[gm~4n] =fmn 4k

which acts on an infinite-dimensional vector p as

(L„,y) k = f "y—"= —(2m —k)y" (3)

The KFF representation [4,5] may be understood as a
natural extension of the adjoint representation, and is

given by the following two-parameter family of the
infinite-dimensional matrix representation L„; (or L„,
for short) which we call the (a, P) representation:

(Z„,)„"=[(a+1)m+p k]S„,„—',
where a and P are arbitrary complex numbers which
characterize the representation. The representation (4)
acts on an infinite-dimensional vector space which we call
the (a,P) module Vt, tt& (or V for short) as follows [4,6l:

(L p)k (L ) kpn

(5)= —[(a+1)m+P —k]P

where pk is an element of V. Notice that indeed the ad-
joint representation (2) is nothing but a particular case of
the KFF representation, i.e. , the (I,O) representation.

The KFF representation allows us to introduce the
dual representation which acts on the vector space V*
dual to V as follows:

(L„,ro)k = (L„,)k "co„=(am+P —k )cok+„,,

where mg is an element of V*. With the introduction of
the dual module V* we can now define the contraction, or
the scalar product, of the two vectors p" and tok which is
invariant under the Virasoro transformation [6],

L„,(ykrok) =O. (7)

= (m —n )8„,+„"gk (k, m, n integers) . ( I )
From the commutation relation we automatically obtain
the adjoint representation I

„„

(Lnl )I1 ~fI'M (m n )~Ill +n

In fact, the dual representation is defined precisely to al-
low such an invariant scalar product.

Now we generalize the KFF representation to a tensor
module of (p, q) type, T„~ Let t;. . . ,

''''
be an .in-

finite-dimensional (p, q) tensor which has p upper indices

(2) and q lower ones, which forms an element of Tt, v We.
define the tensor representation L„,by [6]

(z t) k I (L ) nt k . I+ . . +(z ) nt k I (z ) kt n t . . . (z )
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From the definition it becomes clear that L„,forms a rep-
resentation of the Virasoro algebra. Indeed it is the ten-
sor product of the (a,P) representation. This shows that
the KFF representation can easily be generalized to an

arbitrary tensor module of (p, q) type. In this generaliza-
tion p" and tok become a (1,0) tensor and a (0, 1) tensor,
respectively. One may proceed further to define a tensor
representation of mixed type, by requiring each of the

p+q indices in (8) to transform according to difTerent

(a,P) representations. For example, one can define a
(0,2) tensor of mixed type t;~, where i belongs to an (a,p)
representation but j belongs to an (a', P') representation.
By definition we have

(L„,i);, =(am+P i )t;+„,,—+(a'm+P' j)t;—, +„,, (9)

from which it follows that

([L„„L„]t );J = (m —n ) (L„,+„t");. (i 0)

This shows that one can indeed have a (p, q) tensor of
mixed type. With the above generalization we observe
the following [6].

(1) The Kronecker 6; is an invariant tensor of any
(a,P) representation.

(2) The metric g~ =6;+~ is an invariant tensor of the
( ——,',0) representation. The existence of the invariant
metric makes the ( ——. ,0) representation very important
in physical applications.

(3) The tensor f~" defined by

f,,k=(I, ), '=[(a+ i)i4P —a]s, , '

is an invariant tensor of mixed type, where I. ,j,k belong
to (1,0), (a,P), and (a,P) representations, respectively.
This follows from

A A

(L„,f);,"= (m i)f;+„,,"—+ (am+P j)f;,+„,"—
[(a+ i )m+—P a]f,,"—

=0.
(4) The tensor d;~

k defined by

h p h (i 2)

is an invariant tensor of mixed type, where i,j,k belong
to (al Pl ) (a2 P2) and (at + a2 Pl +P2) ieplesentations,
respectively. Similarly, the tensor dh 'j defined by

By the same reasoning, given an (a~, P~) representation
and an (a2, P2) representation p2, one can define the d

product (p~ep2) by

(~ ~~ )k d k~l~i ~l»~k »l—

to obtain an element of an (a~4a2, P~4P2) module. The
d product allows us to define the "square" of an arbitrary
(a,P) representation p,

(y2) k —(y~ y) k
y»leak

lll

or in general the "nth power" (p") k
by

(pn) —k g p lp 2. . .
y

n

h 1+h. 2+. . . + I.„=h

to obtain an element of an (na, nP) module. Similarly,
one can define the nth power of an (a,P) representation
~h by

Z
h 1+A 2+. . . +hn=h.

to obtain an element of an (na+n —l, nP) module. Of
course the vector products can also be defined between
vectors of different types. For example, given two (a, P)
representations p" and aik, one can define the f product
(yxco)k by

(4")k =fkl 0 ai~

= (ak +P —m )y"'rok +„, (19)

to obtain an element of an adjoint module.
With the above preliminaries we are ready to discuss a

gauge theory of the Virasoro group. For this we first in-

troduce the gauge potential 2„"which forms an adjoint
representation. As for the matter field we consider for
simplicity a scalar multiplet ltl" or cok which forms an

(a,P) representation. Now let O be the infinitesimal

gauge parameter of the Virasoro group which forms an
adjoint representation. Under an infinitesimal gauge
transformation we require

Clearly the f product gives us an element of an (a,P)
module,

[I.„,(ox y)]' = [(z„,e) x yl" + [ox (z„,y)]k

= —[(a4 i)m+P —k](exp)"

d j =6' j+" (i 3)
is an invariant tensor of mixed type, where i,j,k belong
to (a~,P~), (a2, P2), alld (a~ a2 —I,P~

—P2) representa-
tions, respectively.

The existence of the invariant tensors fJ, d;~, and
d;1" allows us to define the vector products, the f product
(the cross product) and the d product (the symmetric
product), between two vectors to obtain another. Given
an adjoint representation O' and an (a, P) representation
p', one can define the f product (Ox&)" by

(ox y) k =j,"o'y~ = [(a+ i )m+ P a] o"'y' "—'

S~„k= —(I/g) [e„e"+ ig(~„xO) 'l

= —( I /g ) [B„ek4ig (2m —k )W„"'Ok "'],

yak —'(Ox p) k

=i [(a41)m+P k]O"'y"—
8Mk = t(ex&)k

= —i (am+P —k )O"'riik+„, ,

(20)
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=a„A," e,—A„"+i'g (2m k)—A„"'A,"

and the covariant derivative D„by
D„p"=r)„p"+ig(A„x(t)

(21)

where g is the coupling constant. Next, we define the
field strength F„," by

F„," =a„A," a—,A„'+ig(A„xA,)"

we will require g to be real in this Letter for a reason
which will become clear soon.

Before we introduce the Lagrangian, we need the con-
cept of Hermiticity. We call a tensor field t; . . . ~"
Hermitian if

(2S)

Notice that, when g is real, one has for Hermitian fields

=6„&"+ig [(a+ 1)m+P —k]A„"'P" (D„y")*=D„y ", (D„top)*=D„to (26)

D&tot, =8&toi tg(A„xto)t,

=B„cot,—ig(am+ p —k)Ap"'rot, +„,.

(22)

6F„," =i (e x F„,)" (23)

Notice that our definition of the field strength (21) is
different from the conventional one in that the self-
interaction couplings as well as the minimal coupling to
the matter of the gauge potential is characterized by ig,
not g. With the definitions we observe the following [6].

(1) The field strength F„," transforms as an adjoint
representation under the gauge transformation,

if a is real and P is imaginary. For this reason we will
call an (a,p) representation Hermitian if a is real and p
is imaginary. With this we notice the following [6].

(1) When g is real, the field strength of a Hermitian
potential 8„"becomes Hermitian,

(F k)4 F k (27)

(2) The f product of two Hermitian fields defined by a
Hermitian representation is anti-Hermitian. For exam-
ple, we have

[(exy) '] * = [(a+ 1 )m+ p k]*e "—'y " '"'

(2g)
(2) The covariant derivatives transform covariantly un-

der the gauge transformation,

(24)

(3) The d product of two Hermitian fields is Hermi-
tlan.

Now we have all the necessary ingredients to construct
~

~

a gauge theory of the Virasoro group. Let A„"be the
Hermitian gauge potential, cog be a Hermitian field

Although all the above equalities hold with a complex g, which forms a ( ——. ,0) representation, and consider the
following Lagrangian:

X =
4 ic d;~ (to )t,. Fp~ Fp~ + ~ (Dobro —t, ) (Dprot; ) + v p co —t,. rot, 4 X(co —t,. tot,).

Ic (Co )(+i' Fp~ + y (Dptoi ) (Dicot; ) + y p top co& 4 A (to& Ni ) (29)

where we have introduced a scale parameter K to keep
kcof,- dimensionless. Notice that the Lagrangian is explic-
itly real. Furthermore, it is manifestly invariant under
the gauge transformation (20), which is made possible
due to the existence of the invariant tensor d;~" and the
invariant metric 6;+, of the ( ——. ,0) representation. To
check the gauge invariance notice that, since F„,' forms a
(1,0) representation, the d product of two field strengths
forms a (2,0) representation. On the other hand, (to )t,
also forms a (2,0) representation due to (18). So the first
term in the Lagrangian is explicitly gauge invariant. The
other terms are invariant because they are the scalar
products of two ( ——. ,0) representations obtained with
the invariant metric 6;+; .

Clearly the Lagrangian describes a genuine gauge
theory of the Virasoro group. Significantly, it can break

the gauge symmetry spontaneously down to the Cartan
subgroup U(1), because toi can play the role of the Higgs
multiplet. To see this let

(30)

and obtalfl

((~6) ) ~6p 0

So with K =m ' and with

top =co+ (5,

B„"=A„'+(i/gto) (2lk )B„to" (k WO),

where to" =80"+'cot =co t, , the Lagrangian (29) can be
written as

L= —
4 6„,"6„„——, g to (k/2)2B. „"B„+—,

' (9„&)(8„p)—p2& +p /4l+higher-order terms,
where

Gp, "=B„A,—r),Ap, 6„," =BpB," —d„B„"(k~0) .



VOLUME 67, NUMBER 25 PHYSICAL REVIEW LETTERS 16 DECEMBER 1991

From this we find that the gauge field 2„"transforms
into the massive vector field B„"which has the mass

mt = —,
'

gro)k
~

= —, g(p /X) ' '-)k
( (k integer) (32)

after the spontaneous symmetry breaking. Furthermore,
the real scalar field p becomes the Higgs field of the sym-

metry breaking, and acquires a mass m =J2p. Only A„
remains massless, and all the massive modes except the
Higgs field p become doubly degenerate.

At this point one may wonder why a gauge theory of
the Virasoro group has not been available so far. The
reason is obvious. The Virasoro group is not only non-

compact, but also does not admit any bi-invariant
Cartan-Killing metric. To make matters worse, the (a, P)
representation (in particular the adjoint representation)
of the Virasoro group does not form a unitary representa-
tion in general [6]. Indeed it becomes unitary only if
a+ a*+ I =0 and P —P* =0. Under this circumstance
one cannot construct a gauge theory of the Virasoro
group with any known method. In our approach we show
explicitly how to construct a gauge theory of the Virasoro
group in the absence of a positive definite bi-invariant
metric. Notice that, in spite of the fact that the adjoint
representation of the Virasoro group is nonunitary, the
unitarity of the theory is guaranteed after the spontane-
ous symmetry breaking of the Virasoro group down to the
Cartan subgroup U(1). Indeed all the physical ftelds be
come explicitly unitary under the U(l) subgroup after
the symmetry breaking This must .be obvious from (31).
This guarantees the positive definiteness of the Hamil-
tonian. Notice that the concept of Hermiticity plays the
crucial role to make the Hamiltonian positive definite.

In conclusion, we have constructed a genuine gauge
theory of the Virasoro group which can give rise to a
spontaneous symmetry breaking. Mathematically the
Lagrangian (29) could be interpreted as a bosonic theory

of a closed string in which the string degrees of freedom
becomes purely internal [7l. But from the practical point
of view it could serve as a simple model for the mesons, or
more generally as a realistic model for the hadrons after
a proper supersymmetric generalization. Just like the
string theory our theory has a dimensional parameter ~,
which obviously should be related to the hadronic scale
characterized by the string tension in the real world. Al-
though the mass spectrum (32) does not fully describe
the spectrum of the mesons to which it was intended, cer-
tainly the theory has many attractive features. A more
detailed discussion of the theory with a Kac-Moody ex-
tension and a supersymmetric generalization will be pub-
lished elsewhere [7].
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