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Are Deviations from Fick’s Law Experimentally Observable?
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Simulations of a colloidal particle suspended in a two-dimensional fluid are reported. The dissipative
and fluctuating hydrodynamic forces acting on the particle are modeled by a lattice gas. Our results in-
dicate that large long-time tails are present in both the translational and the rotational velocity correla-
tion functions; these are the first observations of a rotational long-time tail. The strong translational tail
leads to an observable renormalization of the diffusion coefficient; our results suggest that experimental

observation of the latter effect is possible.
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Colloidal systems are interesting, both in their own
right and because they can be viewed as mesoscopic mod-
els of atomic fluids. Phenomena that are difficult to ob-
serve in simple fluids can often be studied more easily in
colloids. A case in point is the observation of the “long-
time tail” in the velocity autocorrelation function of a
tagged particle. This long-time tail was first observed in
a molecular-dynamics simulation of an atomic fluid [1]
and, although a quantitative theory to account for the
simulation was quickly developed [2,3], direct experimen-
tal observation of the velocity autocorrelation function in
an atomic fluid proved difficult, and only indirect evi-
dence for the existence of a long-time tail could be ob-
tained by neutron-scattering experiments [4]. By con-
trast, in 1973 Kim and Matta [5] observed a long-time
tail for latex spheres dispersed in air and argon, and in
1981 Paul and Pusey [6] observed a long-time tail in the
diffusion of a colloidal particle by means of light-scat-
tering experiments.

There is also good reason to try to measure the self-
diffusion of colloidal particles in an effectively two-di-
mensional suspension, because in two dimensions we ex-
pect that the coupling between the diffusive modes and
the shear modes will change the functional form of the
long-time tail, not just its amplitude as is the case in
three-dimensional systems. For atomic particles the
effect is extremely small and only significant from a con-
ceptual point of view; but for colloidal particles the effect
should be large and easily observable by light scattering,
assuming a quasi-two-dimensional suspension can be
prepared. This has not yet been accomplished, so the aim
of the present paper is to demonstrate, by simulation,
both the nature and the magnitude of the expected effect.
It should be noted that the hydrodynamic memory effects
responsible for long-time tails are absent from traditional
Brownian dynamics simulations [7]. By contrast, the
necessary correlations occur naturally in a lattice gas and
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their effects have been demonstrated by studies of tagged
particle diffusion in lattice gases [8]. It was for this
reason that we began developing a method for simulating
colloidal suspensions [9] in which the solvent is modeled
by a lattice gas; recent work [10] has shown that the dis-
sipative hydrodynamic forces are quantitatively repro-
duced by this technique, even with small solid particles.
In this work we have examined the diffusion of a single
disk suspended in a lattice-gas fluid, to compare with the
theoretical predictions of mode-coupling theory.
Long-time tails in the velocity autocorrelation function
arise because the initial motion of the colloidal particle
sets up a hydrodynamic flow field in the surrounding
fluid, which recirculates around the particle and exerts a
slowly decaying force on it. Direct evidence for this
mechanism was provided by Alder and Wainwright [1]
who measured the flow field around a tagged particle and
observed the characteristic double-vortex structure. In
order to verify that our model can reproduce vortex for-
mation, we have given a colloidal particle suspended in
the lattice gas a finite initial velocity and measured the
time evolution of the flow field. The situation after 600
time steps is shown in Fig. 1; we observe that a double
vortex has indeed developed. A quantitative description
of long-time tails is provided by hydrodynamics [1],
mode-coupling theory [2], or kinetic theory [3]. These
theories predict that the velocity autocorrelation function
in a two-dimensional fluid has a long-time tail of the form

(0 Q) o, ())~1/(D+ V)t , 1)

where D is the self-diffusion coefficient of the colloidal
particle and v the kinematic viscosity of the suspension.
However, this expression is inconsistent, because the
self-diffusion coefficient D is just the time integral of the
velocity autocorrelation function; if this correlation func-
tion decays as t ~!, then D diverges as In¢ rather than
tending to a constant value as assumed in Eq. (1). As
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FIG. 1. Velocity field of the lattice-gas fluid, measured 600
time steps after the colloidal particle has been set in motion.
The observed vortices are responsible for the “long-time tail” in
the velocity autocorrelation function of the colloidal particle.
The section shown measures 90%x 90 lattice-gas units.

was first suggested by Wainwright, Alder, and Gass [11],
a self-consistent picture can be obtained by introducing
time-dependent transport coefficients. In Eq. (1) Dt ac-
tually measures the mean-square displacement A(z) of
the tagged particle. When the diffusion coefficient itself
becomes time dependent, we must return to the micro-
scopic expression for A(z):

A = 2 {Ir (1) = 1(0)1®
=f0'dz'f0’ ds (0. (0)0, (5)) . Q)

The long-time tail of the velocity autocorrelation function
is then given by the mode-coupling formula

(0 (0o () =b/IAG)+ 2], 3)

where b =M*{v2)/8rp, p is the mass density of the fluid,
and M* is the effective mass of the diffusing particle. In
our simulations v is independent of time, as will be seen
later. Consistency of Egs. (2) and (3) implies that at
long times A(z) should satisfy the differential equation

d’A@) _ b
dr? A)+vt

The asymptotic solution of this equation, at sufficiently
long times that A(z)> vt, is A(z) =t~/2b1nz; the corre-
sponding velocity autocorrelation function is proportional
to (tvinz) ~'. The same asymptotic form for the decay
of the velocity autocorrelation function has been derived
ab initio by summing all the mode-coupling contributions
to the long-time tail [12]. Since the long-time tail is
much larger for a colloidal particle than for a tagged fluid
particle, the diverging part of the denominator in Eq. (3)
is also more important; consequently, the self-consistent
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mode-coupling effect is expected to be much more pro-
nounced in colloidal suspensions than in tagged particle
diffusion [8].

In our simulations we used a two-dimensional triangu-
lar lattice gas [13], with a parallelogram-shaped unit cell;
the model differs slightly from Ref. [13] in that all possi-
ble mass- and momentum-conserving collisions are in-
cluded. For convenience we work in reduced units with
the mass of the lattice-gas particles, the distance between
near-neighbor sites, and the time step for updating the
lattice gas all equal to unity. The reduced fluid density
was set to p=+/12, corresponding to a 50% filling of the
lattice. At this particular fluid density the long-time tail
in the stress-stress correlation function vanishes [14];
hence the kinematic viscosity is time independent, well
defined, and equal to the Boltzmann viscosity
vo=0.09722.

A moving solid body interacts with the lattice gas via
additional microrules, which represent the collisions of
the lattice-gas particles with the surface of the solid body
[10]. On average these rules force the fluid next to the
solid particle to move with the local velocity of the parti-
cle surface, modeling a hydrodynamic stick boundary
condition [10]. As a consequence, the lattice-gas parti-
cles exert forces and torques on the colloidal particle
which are then used to update the particle velocities and
angular velocities, according to the assigned mass M and
moment of inertia of the solid particle. The mass of the
solid particle was set to 10 times the mass of the corre-
sponding area of fluid; in the simulations reported here
the mass was of the order of 1000. The effective mass of
the colloidal particle [Eq. (4)], M* =M +2M/, contains
two contributions from the mass of the displaced fluid,
M;=M/10; the first is the hydrodynamic-induced mass
arising from the change in pressure forces as the particle
accelerates, and the second comes from the mass of fluid
contained by the solid particle [10] which also contributes
to its inertia.

To single out the effects of colloidal particle diffusion
on the long-time behavior we also performed a simulation
on a system in which the colloidal particle was artificially
constrained to its initial position, even though it had a
nonzero velocity. We will refer to this constrained parti-
cle as “tethered,” and to the diffusing particle as “free.”
The reason for introducing the tethered particle is that
this constraint forces A(z) in Eq. (3) to be zero; conse-
quently, the velocity autocorrelation function decays
asymptotically as b/ v, the diffusion constant diverges as
(b/v)Int, and there is no renormalization. This allows us
to assess the quality of the simulation by comparing with
a precise theoretical prediction; moreover, we can also
separate the effects of vortex recirculation from the
effects of the coupling between diffusive and shear modes.

The mean-square displacements A(z) of colloidal parti-
cles suspended in a lattice gas are plotted in Fig. 2. Re-
sults are shown for a 512x 512 lattice and a colloidal par-
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FIG. 2. Mean-square displacement divided by time vs the
logarithm of the time, for a free particle (lower curve) and a
tethered particle (upper curve). In the case of the tethered par-
ticle a virtual displacement, given by a time integral of the ve-
locity, was measured. The points with error bars are the simu-
lation data, the solid lines are the numerical solutions to Eq.
(4). Note that the mean-square displacement of the free parti-
cle shows not only a reduced amplitude, but also a noticeable
curvature, caused by the renormalization of the diffusion co-
efficient.

ticle radius of 2.5; they were obtained by time averaging
an already equilibrated system for 50x10° time steps.
Figure 2 shows that for the tethered particle, A(z)/t
diverges logarithmically, whereas for the free particle, the
pronounced curvature [in the plot of A(¢)/t vs In¢] indi-
cates that there is a substantial renormalization of the
mean-square displacement. Both of these effects are suf-
ficiently large that they should be experimentally observ-
able if a quasi-two-dimensional suspension can be
prepared. The divergence of A(z)/t can be seen after
about 1000 times steps, while self-consistent effects are
quite apparent after 10000 time steps (Fig. 2). Since the
diffusion coefficient is roughly 0.1 (Fig. 2) and the parti-
cle diameter is 5 lattice spacings, these times correspond
to root-mean-square displacements between 4 and 10 par-
ticle diameters. Experimentally it is possible to measure
single-particle mean-square displacements up to about
10" m?2, so that not only the divergence of A(r)/t, but
also the self-consistent effects should be clearly observ-
able with 10 ™7 m particles. Although two-dimensional
suspensions do not occur in nature, it seems likely that
such a system could be approximated by dilute suspen-
sions of colloidal particles in thin free-standing films.
Simulations with different size systems showed that the
data in Fig. 2 are free of finite-size effects for up to
20000 time steps. Beyond this time, interference from
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FIG. 3. Angular velocity autocorrelation function (w:(0)
X w- (1)) multiplied by 72 vs time, for the free particle (upper
curve) and for the tethered particle (lower curve). The pla-
teaus are consistent with a 1 %2 decay in both cases.

periodic images causes A(z)/t to approach a plateau
value; for very long times (200000 time steps), the
diffusion coefficient of the tethered particle is consistent
with a hydrodynamic calculation of the mobility of a disk
in a finite-size periodic system [9]. Although the simula-
tions cannot approach the true asymptotic region [A(z)
> vt], the observed renormalization (Fig. 2) is in quanti-
tative agreement with the self-consistent mode-coupling
theory [Eq. (4)] in the intermediate-time regime where
A(z)~vt. However, for both the tethered and the free
particle, a value of b [Eq. (4)] about 8% larger than the
theoretical value, b=M*(v2)/8np, was used. This
discrepancy is probably due to the small size of the col-
loidal particle, relative to the lattice spacing. To test the
effects of particle size, we repeated the simulations for a
larger particle (radius 4.5); in this case we again get
quantitative agreement as in Fig. 2, but now with the
theoretically correct value for 5. However, for this larger
particle the vorticity takes longer to recirculate; thus the
renormalization effect (for comparable times) is less pro-
nounced than in Fig. 2.

We have also studied rotational diffusion by measuring
the angular velocity autocorrelation function {(w,(0)
xw,(t)). We used a particle of radius 2.5 in a system of
256%256 sites and averaged over 250X 10° time steps.
The results suggest that there is a long-time tail in the
angular velocity autocorrelation function, consistent with
an asymptotic ¢ ~>2 decay (Fig. 3). Results for a particle
of radius 4.5 (not shown) also suggest a ¢ ~*? tail, al-
though the asymptotic decay occurs at later times and is
consequently more difficult to quantify. This is the first
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reported observation of a long-time tail in the angular ve-
locity autocorrelation function, although it has been
suspected theoretically for a long time. However, our re-
sults disagree with the simple hydrodynamic arguments
which predict a ¢ 2 tail in two dimensions [15]; at the
moment we have no explanation for this discrepancy. Fi-
nally, we note that Fig. 3 shows that the rotational
diffusion of the free particle is faster than that of the
tethered particle, suggesting that there is some coupling
between translational and rotational diffusion at short to
intermediate times.
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