
VOLUME 67, NUMBER 24 PHYSICAL REVIEW LETTERS 9 DECEMBER 1991

Freezing of the Vortex Liquid in High-T, Superconductors: A Density-Functional Approach
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The structure of the unpinned vortex fluid in layered oxide high-temperature superconductors is inves-

tigated numerically using appropriate classical liquid-state theory, for magnetic fields B perpendicular to
the layer plane. The direct correlation function so obtained is used as input for a first-principles,
parameter-free calculation of the discontinuous Auid-to-Abrikosov-lattice transition boundary Tt(B)
This transition boundary is found to have a shape and location similar to that observed in strongly aniso-

tropic materials, e.g. , Bi-Sr-Ca-Cu-O.

PACS numbers: 74.60.Ge, 64.70.—p

There is overwhelming evidence by now for a relatively
sharp transition in the mixed phase of high-T, oxide su-
perconductors in a magnetic field [1-6]. The transition,
crudely described as a change from solidlike to liquidlike
behavior of interacting quantized magnetic-flux tubes,
occurs at a boundary in the (H, T) plane well below the
upper critical field H, q(T). Vortex entanglement and the
resulting glassy state [7], a frozen defect-induced glass
transition [8,9], thermal melting of the crystalline Aux

lattice [7,9-12], or rapid crossover from Aux creep to flux
Aow [13] have all been proposed as explanations for this
transition.

I n this Letter, we report the results of the first,
parameter-free statistical mechanical study of the vortex
liquid structure and its first-order freezing transition into
an Abrikosov lattice in the limit of vanishing interlayer
Josephson coupling [14] and for the external magnetic
field H parallel to the c axis. This transition should be
seen in systems without frozen disorder for su%ciently
slow cooling rates such that no glass transition intervenes.
There is some evidence in very clean 1:2:3 systems of
mild hysteretic effects characteristic of such first-order
transitions [4]. Even if the vortex liquid forms a glass
due to entanglement [7] or pinning [8,9], the thermo-
dynamic liquid-crystalline solid boundary would underlie
such a glass transition as in ordinary three-dimensional
systems. Indeed, the observed "melting" curve for Bi-
Sr-Ca-Cu-0 single crystals [3], which have very weak in-
terlayer Josephson coupling, is similar in shape and close
in location to our freezing curve. Interestingly, the exper-
imental transition seems insensitive to defect concentra-
tion [4].

Earlier suggestions of Aux-lattice melting [7,9-12]
have all been based on the Lindemann criterion which
states that a solid melts when the rms thermal vibration
amplitude of an atom is more than a certain fraction I of
the interatomic spacing. This one-phase dimensionless
criterion does not indicate why a first-order transition to a
fluid phase occurs, and is quite mysterious since in typical
isotropic 3D solids L=0.1, a very small number. In the
present context much larger values (=0.3) have been
used, ad hoc, to obtain reasonable parameters. By con-
trast, we describe here a quantitative first-principles

theory of the vortex liquid and investigate the vortex-
liquid-Abrikosov-lattice transition using density-func-
tional theory, which has been successfully applied to
study liquid-solid transitions in a wide variety of systems
[15].

In the limit of zero interlayer Josephson coupling and
for Hllc, the vortex Hamiltonian assumes a particularly
simple form which corresponds to a classical [16] system
of point vortices of areal density pz =B/@p (where B is
the magnetic induction and No=bc/2e is the Aux quan-
tum), lying on the superconducting layers and interacting
via an anisotropic pair potential [11]whose Fourier trans-
form is given by

r) '[k'+(4/d')sin (k, d/2)]
k~[1+A, k~+(4X /d )sin (k, d/2)]

Here, k- (k&) is the component of the wave vector k per-
pendicular (parallel) to the layers, d is the interlayer
spacing, A. is the London penetration depth, and I is a di-
mensionless strength parameter given by I =Pd+p/4trk .
Equation (1) implies that vortices lying on the same layer
interact with the usual logarithmic repulsive potential,
whereas vortices on different layers are coupled via an at-
tractive potential arising from their magnetic interaction,
this being weaker by a factor of d/X, =0.01. This attrac-
tion favors point vortices on different layers lying directly
on top of one another, forming vortex lines at low temper-
atures.

We have used standard liquid-state theory [17] to ob-
tain the two-point correlation functions (Fig. 1) of this
system. From these we have calculated the magnetic-
field correlation function measured in neutron-scattering
experiments (lower inset in Fig. 1). Using the calculated
liquid-state direct correlation function c(r) in a density-
functional theory [15], we obtain a first-order melting or
freezing transition along a boundary in the (B,T) plane
(Fig. 2). We emphasize that our theory does not contain
any adjustable parameter and is a 3D theory, including
fully the effects of the electromagnetic coupling between
the layers.

We now proceed to describe the details of our calcula-
tion. As mentioned above, both intralayer and interlayer
interactions between vortices in the present model are
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We have also calculated the dimensionless magnetic-
field correlation function given by

where h(r) is the microscopic magnetic field, V is the to-
tal volume, and the angular brackets denote an ensemble
average. This correlation function is proportional to the
neutron-scattering intensity for scattering wave vector k.
For the case of k- =0, corresponding to scattering paral-
lel to the layers, this is given by

I A,

I+X k~
(3)

In Eq. (4), G's are the reciprocal-lattice vectors (RLV's)
of the crystalline solid, p~'s are the corresponding Fourier
components of the solid density, and eG=c(k=G). The
Fourier components [pG] of the density are varied so as to
minimize the functional on the right-hand side of Eq. (4).
The minimum corresponding to nonzero values for all
pg's represents the crystalline solid. The freezing condi-
tion is obtained when the solid and the liquid have the
same free energy, i.e., for 0, —A~ =0. External thermo-
dynamic parameters (temperature, volume, etc. ) enter
the calculation through the dependence of the c~'s on
them.

For the crystalline phase appropriate to the vortex sys-
tem we consider here, i.e., the Abrikosov lattice, it is easy
to show that 0, —OI is given by a form identical to Eq.
(4) with the RLV's [G] corresponding to those of the
t~o-dimensional triangular lattice and the set of numbers
[cGJ is given by c(k&,k:) calculated at fk&f =JGJ and
k- =0 for a vortex liquid of areal density pz. The in-
tegral in the first term in Eq. (4) can now be reduced to
one over the area of a hexagonal unit cell in a single lay-
er. The function e(k~, O) decays rapidly to zero for large
k~ (see upper inset in Fig. 1); furthermore, for the two-
dimensional system the order parameters [pJ tend to be

where S(k&,k-) is the dimensionless structure factor of
the vortex liquid. Our results for + at T=30 K and at
B=l, 0.5, and 0.09 T are shown in the lower inset in Fig.
1 on a logarithmic scale. The peak at a finite wave num-
ber is a signature of liquid-state short-ranged order in the
system and its height is seen to increase dramatically with
decreasing B.

Finally, we have used the correlation functions calcu-
lated above as inputs to a density-functional theory of
freezing [15]. In this theory the dilference (0, —01) in
the grand canonical free energy of a solid (s) and a liquid
(/) is expressed as a functional of the single-particle den-
sity p(r), the uniform liquid density being pI. The sim-
plest such functional has the form

/j &. OI ~ ) "d3 P(r)
I

P(r)

small and rapidly decreasing with increasing G. This im-
plies that the sum over G in Eq. (4) is rapidly convergent.
For this reason, a many-order-parameter calculation
which we have carried out, retaining all cG's, gives results
close to those in which only the six co's corresponding to
the smallest RLV set are retained.

Our many-order-parameter results for the phase dia-
gram of the 2:2:1:2compound are shown in Fig. 2. We
obtain a first-order transition from a vortex liquid to the
Abrikosov lattice for any given 8 at a temperature Tf(8).
pG at the smallest RLV jumps discontinuously from zero
(liquid) to =0.5 (solid) across this phase boundary (in
typical three-dimensional systems [15], the order parame-
ter jumps are =0.9). The fractional change of the areal
density at freezing is always less than 1%. We have cal-
culated the Lindemann parameter L =(r )'/ /r„„ in two
ways, the first by exactly evaluating (r ) over a unit cell
with our density distribution p(r), and the second by
making a Gaussian approximation for the latter. Our
values for I. are 0.22 and 0.20, respectively, along the
melting curve. These values are significantly lower than
the empirical number of 0.3 used in Ref. [10] and much
higher than the value (—0.1) typical of isotropic three-
dimensional solids.

For large values of B the freezing temperature is ex-
pected [9,11,12] to approach that of a 2D system of point
vortices. As shown in Fig. 2, the calculated freezing tem-
perature becomes independent of B and approaches the
value Tf obtained from a separate density-functional
calculation for a 2D system with a logarithmic potential,
which is sho~n by the dashed line in Fig. 2. Molecular-
dynamics simulations [20] of such a 2D system also show
a first-order melting transition (with prominent hysteretic
behavior) at I /2+=140. The freezing temperature ob-
tained in this simulation when translated into kelvins by
using the parameters of the 2:2:1:2 compound yields
Tg =15 K which is somewhat higher than our value
(=10 K). The discrepancy may partly be due to the
HNC approximation which is known [17] to underesti-
mate the size of the fluid-state correlations.

The first-order melting curve is similar in shape [21]
and location to the observed continuous transition [3]
(see Fig. 2 for comparison with data). However, the
latter occurs at somewhat higher temperatures for the
same field B especially in the large field regime. There
are several possible reasons for this, e.g. , the HNC ap-
proximation, large uncertainties in the absolute scale of I
traceable to that in A, , neglect of 3osephson coupling, and,
finally, the comparison of a glass transition boundary
with an underlying thermodynamic transition occurring
in a clean, nonentangled flux system. Furthermore, ex-
perimental results are quoted in terms of 0 (the external-
ly applied field), whereas it is the magnetic induction 8
which controls the vortex density that enters our calcula-
tion directly.

Important extensions of the present calculation would
be the inclusion of the interlayer 3osephson coupling and
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of random pinning. The eAect of the former is to gen-
erate an interaction between point vortices on nearest-
neighbor planes, of range r&=X and integrated strength
I (g, /g, b, ) . The I]uid-state correlations for weak short-
range random pinning can be investigated using a replica
density-functional theory. These eAects are currently un-
der investigation.
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