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It is well known that Frenkel excitons are not true bosons or fermions. I show that the fundamental
electronic excitations in a linear (noncyclic) one-dimensional molecular aggregate consisting of N cou-
pled two-level absorbers with site disorder are in fact fermions, allowing one to calculate a// of the 2V
excited-state eigenfunctions and eigenenergies with a single N X /N matrix diagonalization. As an appli-
cation, the third-order nonlinear absorption coefficient for a molecular aggregate with site disorder is cal-

culated.

PACS numbers: 71.35.+z, 36.40.+d, 42.65.—k

One-dimensional Frenkel excitons on a site disordered
lattice play a major role in the optical response of J ag-
gregates [1], anisotropic molecular crystals such as 1,4
dibromonapthalene [2] and polysilanes [3]. Much the-
oretical attention has been devoted to the effect of disor-
der on the linear optical response [4] where Frenkel one-
excitons (one molecule on average is excited out of the to-
tal N) can be accurately modeled as bosons. However,
higher excited states with multiple electronic excitations
(two-excitons, three-excitons, etc.) are major contributors
to the nonlinear optical response which, consequently, de-
pends strongly on the nonbosonic nature of Frenkel
excitons— the Pauli exclusion principle forbids double oc-
cupation per site and as a result an n-exciton wave func-
tion is not decomposable into the product of N one-
exciton wave functions. Recent investigations into the
nonbosonic nature of elementary excitations in semicon-
ductor quantum dots [5] and molecular aggregates [6,7]
have led to some rather remarkable predictions regarding
the size dependence of the nonlinear optical response; for
small aggregates the third-order response has been shown
to scale as V2 [5,6], but eventually crosses over to a
linear dependence when the aggregate dimensions exceed
an optical wavelength [6]. In this Letter, it is shown that
the electronic eigenstates in a linear one-dimensional
molecular aggregate with site disorder are, in fact, fer-
mions, by employing a canonical transformation original-
ly developed by Lieb, Schultz, and Mattis [8] in their
analysis of the one-dimensional XY model of antifer-
romagnetically coupled spins. This allows one to immedi-
ately write down all 2"V excited-state wave functions and
energies for a system of /V coupled two-level systems with
site disorder, preparing the way for future nonperturba-
tive investigations into the nonlinear response of confined
excitons.

The Hamiltonian for a one-dimensional array of N
coupled two-level molecules with free ends and site disor-
der is given by

N N—1
H=2 hoblb,+aV X b bys1+bleibsd. (1)
n=l|

n=]|
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Here, w, is the optical two-level transition frequency of
the nth molecule and V is the near-neighbor dipole-dipole
coupling (4V is the exciton bandwidth). The operators
b (b,) are Pauli raising (lowering) operators which
satisfy the anticommutation relations

1B, ,6m]+ =8mn+ (1 — 8pu) 2b, b, (2a)
b6 =0 —6,,,)2b5b, . (2b)

When the excitations are limited to a single site they are
fermions. However, when they are on different sites they
obey Bose commutation relations. By utilizing the fer-
mion transformation of Lieb, Schultz, and Mattis [8], we
can rewrite H in terms of fermion operators. Defining
the Fermi operators ¢, and c,:' as

n—1
Cn =€xp [n’i 3 bj"ijb,, , (3a)
J=i

ch+bfexp

n—1
— i Z. b,-*b,] . (3b)
=

H can be rewritten in terms of the ¢ operators. The result
is identical to Eq. (1) but with the b operators replaced
by the ¢ operators. This is because ¢, ¢, + =b1by+, and
¢icn=b,'b, which can casily be verified by use of Eq. (3).
Equation (1) is now in a quadratic form of Fermi opera-
tors and can be diagonalized by the canonical transfor-
mation nl=2,’,v=| ¢‘,,,c,f, where nl is also a Fermi opera-
tor, to the form

N
H= ;l hQ.nin,. (4)
The coefficients ¢,, and eigenenergies 4 Q. can be found
from [nd,Hl1=rQ,nl, which is equivalent to

A¢s=Qs¢s, (5)

where the NXN matrix A has elements A, =@ Smn
+V(8mn+1+8mn—1) and ¢, is the oth normalized eigen-
vector with the nth element equal to ¢,,. Since n(‘; is a
Fermi operator, the occupation number basis set contains
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all of the 2" eigenfunctions of the system which are easily written down in terms of the Slater determinants. Thus the
single exciton manifold is spanned by the eigenbasis n1]0), which is equal to 1310) =XN=| pouln) with energy h Q. (|0)
is the vacuum state with no excitations and |n) is the state with site n excited). In general, the eigenstates with m exci-
tations result from the application of m creation operators on the ground state:

ndnd, -0l Joy= Y detldo,n,s Gopnys - - - »Popm, |mina - - np) . 6)
nm>ny - >ny,
Because the wave function is zero unless all the n} are different and is independent of the order (up to a sign), the total
number of eigenstates in the mth manifold is N!/m!(N —m)!. The eigenenergy of this state is simply given by

m
Eoror....om=h 2 Q. @)
=
Thus by diagonalizing a single VX /N matrix all 2" eigenfunctions and eigenenergies of a linear array of N coupled two-
level systems with site disorder are immediately obtained.

In order to calculate the nonlinear optical response, the transition dipole matrix elements between the eigenstates are
also needed. The transition dipole operator is given by A=pu Z,’,V=|e'k""bJ+H.c., where u is the transition dipole mo-
ment between the ground and excited states of the two-level system. The only nonzero matrix elements of the transition
dipole operator are those involving states which differ by a single excitation. Using Eq. (6) one obtains

m
<O|T]o| T 'lam|ﬁ|77:§; tee nl"""IO)=#1§| exp[lk l'n‘] 2 dCl[lP:.n.,(P:znz, cee v¢:,,n,,,]

>y >y,

xdet[¢6‘”|, - ’¢°';—I”1~l’¢"l’”l+l’ . .. ’¢a,l"_.|"m] . (8)
Equations (6)-(8) contain all the information necessary |
to calculate the nonlinear optical response nonperturba- ° operators all of the one- and two-exciton eigenstates and
tively for any degree of excitation. The major difficulty is energies (in fact, all of the 2"V eigenstates and energies)
evaluating the sums in Eq. (8). are derived in a single N XN matrix diagonalization re-

In order to appreciate the simplification afforded by the  quiring much less computer memory. One must still
above formalism consider, for example, the third-order  evaluate lengthy sums for the transition dipole moments,
hyperpolarizability for an aggregate of N molecules with  but for the third-order response Eq. (8) consists of only
site disorder. The third-order response requires only N(N—1)/2 terms. Once the eigenstates, eigenenergies,
knowledge of the two-exciton eigenstates and energies and transition dipole moments are evaluated the third-
[6]; since there are N(N—1)/2 two-exciton states, a  order response can be derived from the sum over states
brute force numerical evaluation requires the diagonali- procedure or, in a more compact form, by using reduced
zation of an N(N—1)/2xN(N —1)/2 matrix. However,  equations of motion [5]. For the third-order aggregate
by performing the canonical transformation to fermion hyperpolarizability y(— w;w,®, — ) in the rotating-wave

| approximation one obtains

y( — 0o — w) - 1 < ﬁ { #&,U,#&,o‘z _ H0,6,H 6,,0304H 5304,0,H 55,0 Awdz }

4h3 Awgs, +iye,/2 Awe,FAws,+iTo,, Aws,+ivs,/2

1 1
X , ()
Awg, +iys/2 —Aw62+i702/2>

G,02,03> 0y

where Aw,=w— Q4 poo=(0|inll0), and Hoom0; |
=(0|n,,And,nd,|0). The quantities 7, and T,y are the ' small. In this limit, Eq. (9) generalizes a previous ex-
coherence decay rates for the one- and two-exciton states,  pression [6] by including free-end effects and size disor-
respectively. Equation (9) is strictly valid when the der. The brackets {---) in Eq. (9) indicate an average
~ homogeneous broadening of the one- and two-exciton  over the site transition frequency distribution function.
lines is much less than their separation. As a result, when In the calculations below a Gaussian distribution
radiative damping is dominant (superradiance), Eq. (9)is  P(w,) =x"'"2A 'exp([— (w, — wo)/A1?) is assumed,
applicable only for small aggregates, where the aggregate = where wy is the unbroadened transition frequency.

length is smaller than an optical wavelength [6]. The The nonlinear absorption spectrum for a cw laser of
damping rates are then simply proportional to the square  frequency w; is proportional to Imly(—w,;0.,0,
of the transition dipole moments: ¥,=(uo ./u)?y and —w.)]. The first term in Eq. (9) is responsible for exci-

| 1Y, (,u(,r,,u‘o/u)z. These relations are valid for ton saturation when w; = Q,, while the second term rep-
any degree of disorder as long as the aggregate remains  resents two-photon absorption (TPA) to the two-exciton
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states when 2w, =Q,,+ Q,,. Equation (9) correctly reduces to the independent monomer result when either Aw,>V

or A>V.

All of the quantities in Eq. (9) can be derived analytically for the homogeneous aggregate (A=0). From Eq. (5), the

one- and two-exciton eigenfunctions are the following:

N
ni0)=02/(N+ D1 );lsin[mk/zvﬂlln), k=1,...,N,
and
) N
n[ln12|0)=1—v+—l Y. f{sinlzn,k\/N +11sinlznasko/N +11 =sinlznsk /N +11sinlzn ko/N + 11 | nyna)
ny>ny

respectively, with the eigenenergies Q4 and Q4 + Qy,,
where Q; =wo+2V cos(zk/N +1). Here we have used
the index k instead of o to denote the kth Frenkel exci-
ton. Evaluation of uox from Eq. (8) gives uox =[2/
(N+1)1"2cotlnk/2(N + 1)1 for odd k and zero for even
k, which shows that the k=1 exciton carries most of the
oscillator strength (about 81% for an infinite aggregate).
Hi.k,k, can also be derived analytically, but the expression
is quite lengthy. It is nonzero only if k,+k, is odd,
either of the two following conditions hold: (1) &
=+k, %k, [modulo 2(N +1)], in which case g «,
scales like O(VN/k,+~/N/k,) for N>k, k, or (if the
first condition is not satisfied) (2) k =k, or k=k,, in
which case py 4k, scales like OGN lky) or ONN k),
respectively. In the homogeneous limit saturated exciton-
ic absorption peaks occur at w; =Q,Q3,... and (nega-
tive) TPA peaks at

20, =01+ Q2,0+ Q4,...,0:+Q3,Q:,+Q5,....

Figure 1 shows the most prominent features of the non-
linear absorption spectrum for an aggregate with N =40
and several values of A, calculated by solving Eq. (5) and
using Eq. (9). Several hundred configurations of site dis-
order {w,,w,, . ..,won} were used in the average. Figure
1(a) shows the dominant portion of the spectrum cen-
tered at Q,; the upper curve corresponds to the homo-
geneous aggregate (A=0) while the progressively
broader curves corresponding to increasing values of A.
Note the strong k=1 exciton bleaching resonance at
o, =0, and the much weaker (negative) two-exciton,
TPA resonance when 2w; = Q,+ Q,. As the disorder in-
creases, the bleaching line shape generally broadens and
shifts to the red, which is also characteristic of the linear
absorption spectrum [4]. Note that the linewidth is
significantly less than 2A because of motional narrowing
[9]. The TPA resonance also broadens but shifts to the
blue. Figure 1(b) shows the second most prominent
feature of the spectrum, centered at Q3. Note that the
k=3 exciton bleaching line shape is about 100 times
weaker than the k=1 line shape, and undergoes an oppo-
site (blue) shift with increasing disorder. Two TPA reso-
nances appear to the red of the bleaching line shape, the
first (largest redshift) involves excitation of the two-exci-
ton with k3,k4=2,3 and the second involves excitation to
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FIG. 1. The nonlinear absorption spectrum (in arbitrary
units) for an aggregate with N =40 and V <0 (J aggregate)
calculated from Egs. (5) and (9) for several values of A.
A=0,0.01|V], 0.02|V], and 0.03|¥| in the order of increasing
spectral width. The damping rates used were simply Yo =70 and
Foo' =270, With 70=2%10"3|¥|. In (a) the spectrum is cen-
tered on 2, and in (b) on Q3. For A=0 these two portions con-
stitute over 99% of the spectral area. Note that the spectrum is
clearly dominated by the k=1 exciton bleaching line shape for
the values of A considered here.
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the two-exciton with k3,k4=1,4. Figures 1(a) and 1(b)
represent the dominant contributions to the entire non-
linear absorption spectrum for the values of A considered;
as A approaches values much greater than the exciton
bandwidth, the monomer spectrum, a Gaussian line shape
centered at wg with standard deviation A/~N2, will result.

The formalism outlined here is quite general and will
prove useful in studying the contributions of three and
higher exciton states to the nonlinear optical response.
Such states are necessary in understanding saturated ab-
sorption in the strong-field regime. Experiments of this
type have recently been performed on J aggregates [10].
More fundamental questions regarding the nature of the
disorder-induced coherence length and the validity of
various factorization schemes (such as the local-field ap-
proximation) in strong fields can also be directly ad-
dressed.
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