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Fermion Excited States in One-Dimensional Molecular Aggregates with Site Disorder:
Nonlinear Optical Response
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It is well known that Frenkel excitons are not true bosons or fermions. I show that the fundamental
electronic excitations in a linear (noncyclic) one-dimensional molecular aggregate consisting of N cou-
pled two-level absorbers with site disorder are in fact fermions, allowing one to calculate all of the 2
excited-state eigenfunctions and eigenenergies with a single NxN matrix diagonalization. As an appli-
cation, the third-order nonlinear absorption coe%cient for a molecular aggregate with site disorder is cal-
culated.

PACS numbers: 7 l.35.+z, 36.40.+d, 42.65.—k

One-dimensional Frenkel excitons on a site disordered
lattice play a major role in the optical response of J ag-
gregates [1], anisotropic molecular crystals such as 1,4
dibromonapthalene [2] and polysilanes [3]. Much the-
oretical attention has been devoted to the eAect of disor-
der on the linear optical response [4] where Frenkel one-
excitons (one molecule on average is excited out of the to-
tal N) can be accurately modeled as bosons. However,
higher excited states with multiple electronic excitations
(two-excitons, three-excitons, etc. ) are major contributors
to the nonlinear optical response which, consequently, de-
pends strongly on the nonbosonic nature of Frenkel
excitons —the Pauli exclusion principle forbids double oc-
cupation per site and as a result an n-exciton wave func-
tion is not decomposable into the product of N one-
exciton wave functions. Recent investigations into the
nonbosonic nature of elementary excitations in semicon-
ductor quantum dots [5] and molecular aggregates [6,7]
have led to some rather remarkable predictions regarding
the size dependence of the nonlinear optical response; for
small aggregates the third-order response has been shown
to scale as N [5,6], but eventually crosses over to a
linear dependence when the aggregate dimensions exceed
an optical wavelength [6]. In this Letter, it is shown that
the electronic eigenstates in a linear one-dimensional
molecular aggregate with site disorder are, in fact, fer-
mions, by employing a canonical transformation original-
ly developed by Lieb, Schultz, and Mattis [8] in their
analysis of the one-dimensional LY model of antifer-
romagnetically coupled spins. This allows one to immedi-
ately write down all 2 excited-state wave functions and
energies for a system of N coupled two-level systems with
site disorder, preparing the way for future nonperturba-
tive investigations into the nonlinear response of confined
excitons.

The Hamiltonian for a one-dimensional array of N
coupled two-level molecules with free ends and site disor-
der is given by

H = g h ro„b tb„+ 6 V g [b„~b„+) + b„~+ ) b„] . (1)
n=l

Here, m„ is the optical two-level transition frequency of
the nth molecule and V is the near-neighbor dipole-dipole
coupling (4V is the exciton bandwidth). The operators
b„(b„) are Pauli raising (lowering) operators which
satisfy the anticommutation relations

[b,t, b, ]+ =8 „+(1—8 „)2btb

[b,t, b t, ] ~ = (1 —6' „)2b tb t .

(2a)

(2b)

When the excitations are limited to a single site they are
fermions. However, when they are on difIerent sites they
obey Bose commutation relations. By utilizing the fer-
mion transformation of Lieb, Schultz, and Mattis [8], we
can rewrite H in terms of fermion operators. Defining
the Fermi operators c„and c„~ as

n —
1

c„=exp vari g b~ b~ b„, (3a)

n —
I

c„t+b„exp —rri g b~~b~j=l (3b)

The coefIicients p „and eigenenergies h 0 can be found
from [rit, H] = Itt 0 gt, which is equivalent to

(5)

where the N & N matrix & has elements 4 „=co 6 „
+ V(8„,„+~+8 „—~) and p is the crth normalized eigen-
vector with the nth element equal to p „. Since rlt is a
Fermi operator, the occupation number basis set contains

H can be rewritten in terms of the c operators. The result
is identical to Eq. (1) but with the b operators replaced
by the c operators. This is because c„~c„+]=b„~b„+]and
c„tc„=b„tb„which can easily be verified by use of Eq. (3).
Equation (1) is now in a quadratic form of Fermi opera-
tors and can be diagonalized by the canonical transfor-
mation g =z.„=~& „c„,where ri is also a Fermi opera-
tor, to the form

lV

H= g hn. q.'q.
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all of the 2 eigenfunctions of the system which are easily written down in terms of the Slater determinants. Thus the
single exciton manifold is spanned by the eigenbasis g ~0), which is equal to il ~0) =p„=l p „~n) with energy 60 (~0)
is the vacuum state with no excitations and ~n) is the state with site n excited). In general, the eigenstates with m exci-
tations result from the application of m creation operators on the ground state:

nl &n2 &n
det[p, „„p,„„.. . , p „]~n lnq n ) . (6)

Because the wave function is zero unless all the g are different and is independent of the order (up to a sign), the total
number of eigenstates in the mth manifold is N!/m!(N —m)!. The eigenenergy of this state is simply given by

m. =A, g n, .
n=l

(7)

Thus by diagonalizing a single N xN matrix all 2 eigenfunctions and eigenenergies of a linear array of N coupled two-
level systems with site disorder are immediately obtained.

In order to calculate the nonlinear optical response, the transition dipole matrix elements between the eigenstates are
also needed. The transition dipole operator is given by p=pg„=l e "b„+H.c., where p is the transition dipole mo-
ment between the ground and excited states of the two-level system. The only nonzero matrix elements of the transition
dipole operator are those involving states which differ by a single excitation. Using Eq. (6) one obtains

&O~g, g (p(gt. rlt (0) =p g exp[ik. r„,]
f=l +m

det [pain
~

s Papnq, ~ ~ ~ ~ 4a„n.

]. (8)

Equations (6)-(8) contain all the information necessary
to calculate the nonlinear optical response nonperturba-
tively for any degree of excitation. The major di%culty is

evaluating the sums in Eq. (8).
In order to appreciate the simplification afforded by the

above formalism consider, for example, the third-order
hyperpolarizability for an aggregate of N molecules with

site disorder. The third-order response requires only
knowledge of the two-exciton eigenstates and energies
[6]; since there are N(N —1)/2 two-exciton states, a
brute force numerical evaluation requires the diagonali-
zation of an N(N —I)/2&&N(N —1)/2 matrix. However,

by performing the canonical transformation to fermion

2 2
1 Po, a, Po, a2

y( —co;co, co, —co) =
4 A a~, a&, a3 ) a4 cocoa~ + i yat/2

x 1

Aco, +i y, /2

where Aco —= co —i1, po, —= (Olpri 10&, and p .
—= (O~ri, Pgt, gt, ~O). The quantities y and I are the
coherence decay rates for the one- and two-exciton states,
respectively. Equation (9) is strictly valid when the
homogeneous broadening of the one- and two-exciton
lines is much less than their separation. As a result, when
radiative damping is doininant (superradiance), Eq. (9) is

applicable only for small aggregates, where the aggregate
length is smaller than an optical wavelength [6]. The
damping rates are then simply proportional to the square
of the transition dipole moments: y = (po /p ) y and

- =
& yg (p - /p) . These relations are valid for

any degree of disorder as long as the aggregate remains

1

AN, +lp, /2 ) (9)

small. In this limit, Eq. (9) generalizes a previous ex-
pression [6] by including free-end effects and size disor-
der. The brackets ( . ) in Eq. (9) indicate an average
over the site transition frequency distribution function.
In the calculations below a Gaussian distribution
P(co„)=x 'i 4 'exp([ —(co„—coo)/A] ) is assumed,
where mo is the unbroadened transition frequency.

The nonlinear absorption spectrum for a cw laser of
frequency coc, is proportional to Im[y( —coL, coc, co&, ,—coL)]. The first term in Eq. (9) is responsible for exci-
ton saturation when coL = 0, while the second term rep-
resents two-photon absorption (TPA) to the two-exciton

operators all of the one- and two-exciton eigenstates and
energies (in fact, all of the 2 eigenstates and energies)
are derived in a single N xN matrix diagonalization re-
quiring much less computer memory. One must still
evaluate lengthy sums for the transition dipole moments,
but for the third-order response Eq. (8) consists of only
N(N —1)/2 terms. Once the eigenstates, eigenenergies,
and transition dipole moments are evaluated the third-
order response can be derived from the sum over states
procedure or, in a more compact form, by using reduced
equations of motion [5]. For the third-order aggregate
hyperpolarizability y( —co;co, co, —co) in the rotating-wave
approximation one obtains

PO, ~IP a!,a,O4P ~,04, u2PO2, 0 ~ n2

hco, +hco, +iI, , Aco, +i y, /2
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QtT3
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'

) =[2/(N+1)] ' g sin[nxk/N +1]In), k=1, . . . , N,
n=l

and

em k N+ l]si n[xn ik q/N+1] ]~n in 2),j~ ~0) = tsin rrni[ k /N +1] si n[ urn 2k 2/N +1]—sin [em qgk 1
g/. 2

n 0 +BI, ,res ectively, with the eigenenergies OI, an Ap,

[ /2(N+ 1)] for odd k and zero for even
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~, A, . . . an

tive) TPA peaks at
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the two-exciton with k3, k4=1,4. Figures 1(a) and 1(b)
represent the dominant contributions to the entire non-
linear absorption spectrum for the values of h, considered;
as h, approaches values much greater than the exciton
bandwidth, the monomer spectrum, a Gaussian line shape
centered at coo with standard deviation A/J2, will result.

The formalism outlined here is quite general and will

prove useful in studying the contributions of three and
higher exciton states to the nonlinear optical response.
Such states are necessary in understanding saturated ab-
sorption in the strong-field regime. Experiments of this
type have recently been performed on J aggregates [10].
More fundamental questions regarding the nature of the
disorder-induced coherence length and the validity of
various factorization schemes (such as the local-field ap-
proximation) in strong fields can also be directly ad-
dressed.
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