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Dynamical growth aspects of symmetry-breaking
order parameter is a second-rank tensor, e.g. , strain
are considered. It is found that a single domain d
but instead a perpetually twinning interface propa
tempting to minimize its kinetic energy.
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In order for one to describe systems which undergo a

symmetry-breaking first-order phase transition, both the
nucleation and growth processes must be accounted for.
The latter is usually associated with the propagation of
interfaces separating the high-temperature parent phase
and the low-temperature product phase, and the growth
laws describing this motion are often amenable to
classification via universality. As with all transitions, the
number of components of the order parameter, and the
symmetries of the system, strongly inAuence the behavior
at the transition [1]. The most common theoretical ap-
proach involves the use of time-dependent Ginzburg-
Landau theory (TDGLT) which associates a thermo-
dynamic force with an approach to equilibrium governed
by a viscous damping term, i.e., it is essentially an over-
damped description of the dynamics. At long times, this
description is generally considered to be adequate.

This Letter examines systems which undergo structural
phase transitions for which a discontinuous change of
shape of the unit cell signifies the transition and the pri-
mary order parameter is a second-rank tensor, namely,
strain. The interfacial motion that we find, studied with

purely deterministic dynamics, contrasts sharply with the
TDGLT approach discussed above. The overdamped
(i.e., diffusive) limit, in which the mass density is set to
zero, leads to an infinite sound velocity. This means that
a disturbance is "communicated" instantaneously to the
whole solid. The point of this Letter is to display the very
complicated interfacial dynamics found when the physical
(underdamped) hydrodynamic limit is employed.

A one-dimensional deterministic model will be con-
sidered which lacks the geometrical difticulties of more
general ferroelastic systems [2]. However, experiments
usually show that after the transition has occurred, arrays
of twins (viz. , two symmetry-related crystal shapes being
periodically alternated along a single axis) are found
(e.g. , see Fig. 2b of Ref. [3]), and thus our model is
su%ciently general to address the question: What are the
dynamics that lead to this ordered polydomain product
phase? Up until now, only the energetics of such static
configurations [4] have been considered, even though a
number of experimental papers [5,6] have provided evi-
dence that factors such as the degree of undercooling can
indeed inAuence the final morphology. After presenting
our theoretical work we shall return to the experiments

, first-order phase transitions for which the primary
describing diffusionless structural phase transitions,

oes not always grow inside the parent phase matrix,
gates through the system, a result of the system at-

for comparison.
It is standard that in TDGLT the growth interface is

described by a moving kink-type solitary wave which con-
nects only one variant of the low-temperature phase with
the parent matrix. Except for certain pathological
boundary conditions [7], no such single solitary wave
solutions exist for the strained system at nonzero under-
cooling and finite damping. Instead, the growth front can
be described by (a) a perpetually twinning interface
which has a localized kinetic energy, but cannot be
classified as a usual propagating kink, or (b) two kinks
connecting diAerent strains of opposite sign moving at
different speeds. A phase diagram will be presented
showing how the competition between inertia, damping,
and undercooling determines which of the two types of
motion described above [(a) or (b)] will be obtained.
The boundary in phase space between these two types of
solutions can be approximated by comparing the growth
velocity with the sound velocity of the parent phase.

We shall focus on the simplest first-order symmetry-
breaking transition for which strain is the primary order
parameter, viz. , only a single strain is involved in the
transition, and the product phase is only doubly degen-
erate. A single (vector) displacement fiel u(x) is used,
which depends on one spatial variable x. The strain is
then simply e=—u, . Further, an on-site p Landau free
energy is employed for which e =0 corresponds to the
high-temperature parent phase, while e = ~ e„, corre-
spond to the doubly degenerate, low-temperature product
phase. Thus, the free-energy functional F[e(x, t)] that
we use is

F[e(x,t)] =Fo(T)+ [f( (e)+ —,
' De, ]dx, (1)

where T is the temperature, and the local Landau free-
energy density ft (e) is an expansion for small strain:

ft (e) = —,
' ABTe —

4 Be + —„' Ce (2)

The coeScients 8, 8, C, and D are positive constants, and
6'T=T —T, , where T, is the instability temperature of
the parent phase. The minima of ft (e) define the stable
equilibrium values of the strain for a homogeneous sys-
tem. In particular, if the temperature is above the first-
order transition temperature Tl, there is only one abso-
lute minimum located at e =0 (the parent phase), and if'

the temperature drops below T], the parent phase be-
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proximated by setting e2 =e; in Eq. (6), and then solving
for A, (6T) (which defines the critical value of A at
which twinning occurs). We need only calculate the
growth speed. This is not a trivial matter, but a rough
estimate can be made if we turn to the energy balance
condition dE,.„h/Ch =. —2R, where E,„his -the total

e,'„—e, (ST e—+e )'"

mechanical energy. The left-hand side can be calculated
exactly for the profile in Fig. 2, and we will approximate
the right-hand side with the Rayleigh dissipation function
R for the overdamped kink, viz. , Eq. (5). Combining Eq.
(6) and the energy balance equation, and including non-
linear corrections to the speed of the forward kink(= v, ), w. e then obtain

(7)

where e„, and e; are functions of 6T. This curve is plot-
ted in Fig. 3 along with results from the numerics; clear-
ly, the agreement is superb. Also note that Eq. (7)
diverges when 6T=—0.136. Between this temperature and
the transition temperature (8T

~

= ~'„ in our rescaled
units) twinning will not occur for any value of A.

We now consider the more familiar model 8 dynamics
[I], and use it to display the complete dependence of our
twinning results on how the finite propagation time, im-

posed by the inertia of the displacement field, leads to a
type of conservation law. Consider a system with a con-
served scalar order parameter that includes a nonzero
transit time [12] for the current to propagate in the sys-
tem, denoted by i. The continuity and constitutive equa-
tions are then

e =v. J + I J=V (8)
rJt 6&

The resulting equation of motion for N is

9f( V p 6F (9)

which, except for the damping term, is identical in form
to Eq. (3). When integrated, the interfacial dynamics for
this system is found to have the same topology as that of
either Figs. 1(b)-l(d) or Fig. 2. Then, if one lets the
effective inertia of this system vanish, viz. , i 0, one ob-
tains the usual overdamped TDGLT. However, the re-

sulting interfacial deterministic dynamics still mimics
(the topology of, anyways) a perpetually twinning inter-
face. This is because the local conservation law is always
imposed for model B dynamics, irrespective of whether or
not a relaxation time is included. For our strain system
the nonlocal conservation law corresponds to the boun-
daries remaining fixed only for a nonzero mass density.
This latter empirical conservation result is a direct conse-
quence of the finite propagation time of the elastic field,
but is no longer obeyed when the inertia is set to zero [see
Fig. 1(a)].

In conclusion, we have shown that the inclusion of the
inertia of the displacement field when considering the in-
terfacial dynamics for symmetry-breaking, first-order
phase transitions involving strain as the primary order pa-
rameter leads, in some cases, to autocatalytic twin forma-
tion. It will be difficult to test this idea experimentally,
simply because the typical speeds of sound in a metallic
solid are of order 2000 m/s; no direct observation of the
interfaces could thus be accomplished. However, related

experiments [5,6] for order-disorder transitions which in-
volve a concomitant discontinuous change of shape of the
unit cell, and where diffusion is required and which thus
proceed much more slowly, have indeed shown that a
large undercooling does lead to enhanced twin formation
[5], in agreement with our Fig. 3. In fact, the complete
nucleation and growth sequence displaying this twin for-
mation has been seen using in situ electron micrographs
[6]. In our simulations of such a coupled system (which
also included the coupling to the thermal field and the ex-
pulsion of the latent heat) this behavior was also found,
and the twins were formed dynamically; these results will

be reported elsewhere [13].
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