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Dynamical growth aspects of symmetry-breaking, first-order phase transitions for which the primary
order parameter is a second-rank tensor, e.g., strain describing diffusionless structural phase transitions,
are considered. It is found that a single domain does not always grow inside the parent phase matrix,
but instead a perpetually twinning interface propagates through the system, a result of the system at-

tempting to minimize its kinetic energy.
PACS numbers: 64.70.Kb, 11.20.Dj, 63.75.4+z

In order for one to describe systems which undergo a
symmetry-breaking first-order phase transition, both the
nucleation and growth processes must be accounted for.
The latter is usually associated with the propagation of
interfaces separating the high-temperature parent phase
and the low-temperature product phase, and the growth
laws describing this motion are often amenable to
classification via universality. As with all transitions, the
number of components of the order parameter, and the
symmetries of the system, strongly influence the behavior
at the transition [1]. The most common theoretical ap-
proach involves the use of time-dependent Ginzburg-
Landau theory (TDGLT) which associates a thermo-
dynamic force with an approach to equilibrium governed
by a viscous damping term, i.e., it is essentially an over-
damped description of the dynamics. At long times, this
description is generally considered to be adequate.

This Letter examines systems which undergo structural
phase transitions for which a discontinuous change of
shape of the unit cell signifies the transition and the pri-
mary order parameter is a second-rank tensor, namely,
strain. The interfacial motion that we find, studied with
purely deterministic dynamics, contrasts sharply with the
TDGLT approach discussed above. The overdamped
(i.e., diffusive) limit, in which the mass density is set to
zero, leads to an infinite sound velocity. This means that
a disturbance is ‘“‘communicated” instantaneously to the
whole solid. The point of this Letter is to display the very
complicated interfacial dynamics found when the physical
(underdamped) hydrodynamic limit is employed.

A one-dimensional deterministic model will be con-
sidered which lacks the geometrical difficulties of more
general ferroelastic systems [2]. However, experiments
usually show that after the transition has occurred, arrays
of twins (viz., two symmetry-related crystal shapes being
periodically alternated along a single axis) are found
(e.g., see Fig. 2b of Ref. [3]), and thus our model is
sufficiently general to address the question: What are the
dynamics that lead to this ordered polydomain product
phase? Up until now, only the energetics of such static
configurations [4] have been considered, even though a
number of experimental papers [5,6] have provided evi-
dence that factors such as the degree of undercooling can
indeed influence the final morphology. After presenting
our theoretical work we shall return to the experiments
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for comparison.

It is standard that in TDGLT the growth interface is
described by a moving kink-type solitary wave which con-
nects only one variant of the low-temperature phase with
the parent matrix. Except for certain pathological
boundary conditions [7], no such single solitary wave
solutions exist for the strained system at nonzero under-
cooling and finite damping. Instead, the growth front can
be described by (a) a perpetually twinning interface
which has a localized kinetic energy, but cannot be
classified as a usual propagating kink, or (b) two kinks
connecting different strains of opposite sign moving at
different speeds. A phase diagram will be presented
showing how the competition between inertia, damping,
and undercooling determines which of the two types of
motion described above [(a) or (b)] will be obtained.
The boundary in phase space between these two types of
solutions can be approximated by comparing the growth
velocity with the sound velocity of the parent phase.

We shall focus on the simplest first-order symmetry-
breaking transition for which strain is the primary order
parameter, viz., only a single strain is involved in the
transition, and the product phase is only doubly degen-
erate. A single (vector) displacement field u(x) is used,
which depends on one spatial variable x. The strain is
then simply e=u,. Further, an on-site ¢® Landau free
energy is employed for which e =0 corresponds to the
high-temperature parent phase, while e = *e¢,, corre-
spond to the doubly degenerate, low-temperature product
phase. Thus, the free-energy functional Fle(x,7)] that
we use is

Fle(Gx,01=Fo(D+ [If.(@)+ L Delldx, (1)

where T is the temperature, and the local Landau free-
energy density f7. (e) is an expansion for small strain:

fi(e) =%+ A6Te*— + Be*+ L Ce®. 2)

The coefficients 4, B, C, and D are positive constants, and
6T=T—T,, where T, is the instability temperature of
the parent phase. The minima of f; (e) define the stable
equilibrium values of the strain for a homogeneous sys-
tem. In particular, if the temperature is above the first-
order transition temperature T, there is only one abso-
lute minimum located at e =0 (the parent phase), and if
the temperature drops below T, the parent phase be-
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comes metastable and two new absolute minima develop,
which are the two variants of the product phase. Finally,
for T <T,, the parent phase becomes unstable. Our
analysis will only be concerned with the growth of the
product phase when T.<T < T,. This potential repre-
sents a variety of structural (so-called martensitic) phase
transitions [8], such as the 2D square-to-rectangular
transition, and the 3D tetragonal-to-orthorhombic transi-
tion.

For this range of temperatures, the free energies of the
homogeneous phases are different, so the interface
separating the nucleated domain of (low free energy) the
product phase from the background (higher free energy)
parent phase would be constantly accelerated unless the
motion is damped, removing the energy gained via the
larger volume fraction of the product phase after the in-
terface propagates [9]. Thus, we include the sound-wave
viscosity following from the Rayleigh dissipation function
R for the elastic field, R =fl— ye?dx. Last, and most im-
portantly for the dynamics presented in this Letter, we in-
clude the kinetic energy density 7 = ¥ pu/?, where p is the
mass density, finally leading to the equation of motion

Aey =[6Te—e’+e’—e el
3)
A=pD/y?.

The rescaling of the variables used to obtain the equation
of motion is given by
1/2

where the tildes have been dropped in Eq. (3). We there-
fore obtain a two-parameter model which depends on a
rescaled undercooling (67) and a rescaled mass coef-
ficient (A).

To proceed we have considered the initial £ =0 state to
be a single nucleation center in the parent phase which is
large enough to overcome the barrier to grow into the
product phase. Our results do not depend qualitatively on
the choice of the initial strain field, so we choose a pulse
which is both static and symmetric about x =0 (e.g., an
asymmetric nucleus leads to the same kind of interfacial
dynamics). Since the equation of motion is also sym-
metric about this point, we need only examine x > 0.
Then, we integrate Eq. (3) numerically to obtain the
mean-field dynamics for this model.

In the overdamped (A =0) limit, one can obtain an an-
alytic solution for the interface in the form of a kink-type
propagating solitary wave given by

*e,

(x,t)= , (5)
T i explx — o)/ 72
where e, =0.5(1++/1 —48T) is the martensitic strain.

The speed v and width / are uniquely determined by the
undercooling 87. (This, as was mentioned earlier, corre-
sponds to the TDGLT; e.g., the speed v is determined by

balancing the energy gained from the newly transformed
state, with the energy lost from the dissipative forces.)
After a short transient, our initial pulse rapidly ap-
proaches a steady-state profile consisting of two kinks,
one moving to the right at a speed v, and one moving to
the left at the same speed [see Fig. 1(a)]l. Analysis of the
displacement field [found by integrating e(x,7)] reveals
that a finite velocity (u,) develops everywhere in the
parent phase. In the overdamped limit (zero mass densi-
ty) this solution is perfectly acceptable. However, if the
mass density is nonzero, such motion would correspond to
an infinite kinetic energy. That this solution is not real-
ized in the physical hydrodynamic description is a direct
consequence of the finite propagation time of the elastic
field found for p=0. Instead, we empirically find that the
displacement field far from the interface must remain
fixed, and thus the parent phase is “bent” in the immedi-
ate vicinity of the growth front. The resulting profile can
differ quite dramatically from the overdamped solution,
as is seen in Figs. 1(b)-1(d).

The growth of the product phase, therefore, induces a
stress on the parent phase at the interface. This gives rise
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FIG. 1. Strain profile vs position at three different times for
8T =0.04. (a) The overdamped solution (A=0); (b)-(d) the
evolution of a perpetually twinning interface when A=1. The
dashed line is the initial (t =0) profile.
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to a local “twinning force” which creates a strain opposite
in sign to the originally nucleated pulse. As a conse-
quence, if one starts with the e =e,, state, the e= —e,
state is produced to the right of the interface [see Figs.
1(b)-1(d)]. This new variant of the product phase starts
to grow until the process repeats itself in reverse. The
moving interface separating product from parent alter-
nately leaves behind a structure consisting of both of the
doubly degenerate low-temperature variants connected by
static domain walls. It is easy to show that the kinetic
energy for this type of growth is localized in the vicinity
of the interface, thereby minimizing the total mechanical
energy. Notice that this is a purely dynamic effect and
that the remaining twinned structure is not the lowest
static energy configuration. The spacing between the
domain walls is determined by the dynamical parameter
A and the undercooling 87. We shall refer to this process
as autocatalytic twin formation, and our explanation is
one that contrasts with static theories based on nonlinear
elastic restoring forces [3].

The magnitude of the stress induced in the parent
phase depends strongly on the growth velocity, and hence
the parameters 67 and A. One finds that as the velocity
is decreased, the resulting twinning force is no longer
strong enough to overcome the energetic barrier for nu-
cleation of the opposing variant. In this case, the profile
seen in Fig. 2 develops. This profile consists of two kink-
type solitons connecting values of the strain that do not
correspond to energy minima, and are solely determined
by the dynamics. (Of course, these structures cannot per-
sist when the outer interface reaches the boundary, and
indeed upon reflection from a free boundary, we have
found that twinning can occur. Boundary effects for
strain in finite systems are quite restrictive [10]; however,
a twinned product phase necessarily lowers the surface

0.0 X 120.

FIG. 2. Two-kink solution for the evolution of the strain field
for §T=0.15 and A=1. The initial profile (dashed line) and
three subsequent times are plotted as a function of position x.
The new phase is growing to the right at velocity v, and the ve-
locity of the forward kink with amplitude e, is approximately
given by the speed of sound in the parent phase, v,.
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stresses that must be present to stabilize the static mar-
tensite [11].)

This leads us to the twinning/no-twinning phase dia-
gram shown in Fig. 3. First, in (A,8T) phase space, we
have numerically determined that only for sufficiently
large undercooling (small §7) and small damping will
autocatalytic twinning occur. Then we have found that
this behavior has a simple explanation in the form of a
geometrical relation between the induced strain (e,) in
the parent phase, the growth speed (v), and the speed of
sound (vy) (=+/8T/A in a linear theory), namely,

er=env/(vs—v). (6)

These quantities are labeled in Fig. 2. This equation can
be derived from the condition that the displacement field
remain fixed far from the growth region for the profile
shown in Fig. 2. As the growth speed approaches the
speed of sound, the strain e; will exceed the spinodal
strain (e;) determined by 82f(e)/de?=0, viz., ¢; =0.1(3
—~/9—208T). If the strain e, does not reach this criti-
cal value, twinning does not occur, and the profile shown
in Fig. 2 is obtained. Otherwise, the strain becomes un-
stable and the system starts to autocatalytically twin, as
shown in Figs. 1(b)-1(d). In the overdamped limit
(along the A =0 axis), the speed of sound is infinite, and
hence the strain e, is identically zero; Fig. 1(a) is thus
seen to be the vy — oo limit of Fig. 2 [cf. Eq. (6)].

Based on the above, one can expect the boundary be-
tween twinning and no-twinning in phase space to be ap-
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FIG. 3. Critical value of the renormalized mass density, A,
vs the undercooling §7. When A exceeds A, one obtains auto-
catalytic twin formation, (a). Otherwise, the strain evolves as
in Fig. 2, (b). Numerical results are shown along with the
theoretical curve obtained from Eq. (7) (solid line). 8T,
=0.1875 is the transition temperature in rescaled units.
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proximated by setting e>=e; in Eq. (6), and then solving
for AM2(8T) (which defines the critical value of A at
which twinning occurs). We need only calculate the
growth speed. This is not a trivial matter, but a rough
estimate can be made if we turn to the energy balance
condition dE neen/dt = —2R, where E e is the total

A!/2= —e,ﬁ‘,e,-(ﬁT—e,-2+e,-“)'/2

mechanical energy. The left-hand side can be calculated
exactly for the profile in Fig. 2, and we will approximate
the right-hand side with the Rayleigh dissipation function
R for the overdamped kink, viz., Eq. (5). Combining Eq.
(6) and the energy balance equation, and including non-
linear corrections to the speed of the forward kink
(==1v,), we then obtain

(7

C

where ¢, and e; are functions of 7. This curve is plot- |

ted in Fig. 3 along with results from the numerics; clear-
ly, the agreement is superb. Also note that Eq. (7)
diverges when 6T==0.136. Between this temperature and
the transition temperature (87,= & in our rescaled
units) twinning will not occur for any value of A.

We now consider the more familiar model B dynamics
[1], and use it to display the complete dependence of our
twinning results on how the finite propagation time, im-
posed by the inertia of the displacement field, leads to a
type of conservation law. Consider a system with a con-
served scalar order parameter that includes a nonzero
transit time [12] for the current to propagate in the sys-
tem, denoted by 7. The continuity and constitutive equa-
tions are then

0 SoF
®, =V- T |I=vZ-. €]
! . [T ot 1=V )
The resulting equation of motion for @ is
S6F
td),,=VZE"‘q), s 9)

which, except for the damping term, is identical in form
to Eq. (3). When integrated, the interfacial dynamics for
this system is found to have the same topology as that of
either Figs. 1(b)-1(d) or Fig. 2. Then, if one lets the
effective inertia of this system vanish, viz., r— 0, one ob-
tains the usual overdamped TDGLT. However, the re-
sulting interfacial deterministic dynamics still mimics
(the topology of, anyways) a perpetually twinning inter-
face. This is because the local conservation law is always
imposed for model B dynamics, irrespective of whether or
not a relaxation time is included. For our strain system
the nonlocal conservation law corresponds to the boun-
daries remaining fixed only for a nonzero mass density.
This latter empirical conservation result is a direct conse-
quence of the finite propagation time of the elastic field,
but is no longer obeyed when the inertia is set to zero [see
Fig. 1(a)].

In conclusion, we have shown that the inclusion of the
inertia of the displacement field when considering the in-
terfacial dynamics for symmetry-breaking, first-order
phase transitions involving strain as the primary order pa-
rameter leads, in some cases, to autocatalytic twin forma-
tion. It will be difficult to test this idea experimentally,
simply because the typical speeds of sound in a metallic
solid are of order 2000 m/s; no direct observation of the
interfaces could thus be accomplished. However, related

43(e, +e)6Te,— T ef+ 2 e+ 1 6Te,, — F e+ Lell

experiments [5,6] for order-disorder transitions which in-
volve a concomitant discontinuous change of shape of the
unit cell, and where diffusion is required and which thus
proceed much more slowly, have indeed shown that a
large undercooling does lead to enhanced twin formation
[5], in agreement with our Fig. 3. In fact, the complete
nucleation and growth sequence displaying this twin for-
mation has been seen using in situ electron micrographs
[6]. In our simulations of such a coupled system (which
also included the coupling to the thermal field and the ex-
pulsion of the latent heat) this behavior was also found,
and the twins were formed dynamically; these results will
be reported elsewhere [13].
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