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Nonlinear Heat Transport near the Superfluid Transition of He
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We investigate the effect of a finite heat current Q on the superIIuid transition of He. We perform a
renormalization-group (RG) calculation of the temperature profile and of the critical thermal conduc-
tivity kr(Q) in the nonlinear-response regime. In the experimentally accessible region close to T& we

predict the divergence )I.T(Q) —Q
~ with the effective exponent y&=0.31. An experiment is proposed

to detect this nonlinear effect. We also present the exact RG result x =(2v) ' for the depression of the
transition temperature T~ —T~(Q) —Q".

PACS numbers: 67.40.Pm, 64.60.Ht, 66.60.+a

The study of dynamic critical phenomena over the past
two decades has been focused primarily on equilibrium
properties in the linear-response regime [I] (except for a
few studies on nonlinear relaxation [1,2]) as well as on
those nonequilibrium properties where mean-field theory
provides an adequate description in some respects [3].
Very little is known about nonlinear eff'ects due to finite
perturbations that bring the system out of equilibrium
without implying mean-field critical behavior. Of partic-
ular interest are systems with reversible couplings since
they have divergent transport coeScients [1], and thus
their crossover from the linear- to the nonlinear-response
regime is dominated by large Auctuation eAects which
may be accessible to experimental observation. In this
Letter we present the first renormalization-group (RG)
study on an observable divergent transport coeScient in
the nonlinear-response regime where mean-field theory
fails even in a qualitative sense.

A well-suited candidate for this study is the thermal
conductivity XT(gp) of bulk He near Tq in the presence
of a finite heat current Qp. The critical behavior of XT(0)
is accurately known both experimentally [4] and theoreti-
cally [5]. No theory is available so far for the nonlinear
efl'ect XT(gp) XT(0) apart from mean-field and scaling
considerations [6]. We shall see that this eflect results in
a depression of the critical temperature dependence of kT.
This is intimately related to the depression of the transi-
tion temperature Tq(gp) by a finite heat current that has
been recently observed [7]. Furthermore, we predict a
critical divergence XT(gp) —Qp

' for Qp 0 in the
nonlinear-response regime near T~ with an eAective ex-
ponent y& =0.31.

Since there exists no critical behavior of A, T at the
mean-field level a RG treatment of the fluctuations is
necessary. Unlike the homogeneous situation for Qp 0,
the problem at finite Qp is highly nontrivial because of
the spatial inhomogeneity. Nevertheless, we are able to
perform a renormalized perturbation calculation and to
make a quantitative prediction on XT(gp) without an ad-
justment of parameters.

We start from the Langevin equations for the order pa-
rameter y(x, t) and the entropy variable m(x, t) of model

F (Ref. [I]) in the presence of a heat source Wp.

6H . BH
2I p +igpl// +e, ,gy* Bm

m =gpV +gpV j,+ 8 p+0„, ,
26H

m
(2)

d'x(l rplwl'+ l l&lt I'+uplv I'

+!gp 'm'+ypmltitl'), (3)

with j,. (x,t):—Im[y*(x, t)Vttr(x, t)]. A stationary heat
current Qp in the z direction is produced by

Wo(z) =go[&(z+z') —B(z —z')], (4)

=(ro —ro, )/2y g +&6H/Sm), (s)

where Tq denotes the transition temperature at Qp=0.
Taking the average of Eq. (2) and integrating over z
leads to

Xp t(z, gp) +gp(j;)(Z, gp) + Qp =0 . (6)

Our concept is to calculate (j, ) and to integrate Eq. (6)
to obtain the stationary profile t(z, gp). The latter can
then be inverted to get z =z(t, gp). We define a local
thermal conductivity by

r

XT(z, gp) = —
Qp t(z, gp)

Bz
(7)

=kp[1+ gp&j,.)(z, gp)/Qp]

and substitute z =z(t, gp). This yields the temperature
dependence of the nonlinear thermal conductivity

i.e., by a heat source and sink in the planes z = —z' and
z =z', respectively. Eventually we shall let z' ~. A
possible Qp dependence of the Langevin forces is neglect-
ed. We shall always consider the stationary case. We
may interpret 6H/6m =@pm+ ypl I/fl as a fluctuating lo-
cal temperature variable [8] and introduce the tempera-
ture profile T(z, gp) via the local reduced temperature

t (z, gp) = [T(z,gp) Tg]/Tg
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(m) Mt: = go(go/Xo) (z zo) (9)

and (y)Mt:=0. Accordingly, we decompose m =(m)Mp
+6m. Treating the fluctuations y(x, t) and Sm(x, t) up
to one-loop order we obtain

(j, )(z, go) =Im (y(x, t)y*(x', t))ot„=„8 (io)

where the superscript index 0 of the dynamic propagator
(yy*)—:G means that y, b'm and the corresponding

~T lt, go] =AT(z (t, Qo), Qo) at finite Qo.
The remaining task is the calculation of (j,)(z,go). In

the following we confine ourselves to T(z, go) & Tq. In
the mean-field approximation corresponding to go=yp
=uo=0, Eqs. (1)-(4) yield

response fields $,8m are kept only up to second order in

the dynamic statistical weight. The difficulty of the prob-
lem is due to the spatial dependence of the temperature
variable

ro(z, Qo) =ro+ 2)'o(m)MF = —2 yogogoz/~o

already at the mean-field level according to Eqs. (5) and
(9). Here we have chosen the arbitrary constant zo such
that rp vanishes at z =0. This choice fixes the nonlinear-
response region T(z, go) = Tq of the temperature profile
at the origin of the z axis for arbitrary Qo, which is well
adapted to the investigation of the critical Qo depen-
dence. Expanding G with respect to Qo at fixed ro leads
to a series that, for our case x' =x, can be summed up ex-
actly. The details of this calculation will be published
elsewhere. The result is, in three dimensions,

(j, )(z,go) = ——, (gogo/koI o)+~/p(Xo) [ro+k ] (i 2)

' 2
1 QoAo= —— P'p
6 A, p

~ go yogogoI o

pl2
0

—2 gogo . (14)

where
r

@p(J)=I (p) 'Re ( —y) "/' dss" 'exp[ —s' —s(

with ( —y) '/ =y '/ e' / for y & 0 and @p(0) = l. At
tXo=O, Eq. (12) yields the one-loop term of the linear

thermal conductivity [5]. The nonlinear effect is con-
tained in

r, (z, go)+ [go((r) /gol (is)

the known effective parameters [5,9] v[t], v =(w, y, F,
f,u), at go=0. The argument t, however, is replaced by
a Qo-dependent flow parameter r (z, Qo) which is deter-
mined implicitly by

An appropriate description of the critical behavior re-
quires renormalization of the bare perturbative result
(12)-(14). The renormalizations at Qo =0 are well
known [5,9]. Since the ultraviolet divergences are not
changed by a finite heat current no new renormalizations
are necessary; thus we can express our results in terms of

Here

r, (z, go) = 8try[r]F[r] [Qo&(r ) /go]z/&(r )

is the renormalized counterpart of the temperature vari-
able ro [Eq. (11)],with g(t) being the correlation length

t

above Tq (Ref. [4]). From (6) and (12)-(14) we obtain
the reduced temperature profile,

t(,go) =,[1 —!f[ ][, '"e 1/2(X, ) —I]],
+, = ——, 7r f[r]r, [Qo&(v') /go] (f[z] —8y[r]F[r]w"[z]/w'[z] —16y[r] w'[r]),

(17)

where ~, is the renormalized counterpart of Xo. Equation (15) can be combined with (17) to eliminate r, and to get
r =r [t,go]. From (8) and (12)-(14) we then obtain the nonlinear thermal conductivity,

~ k C (i9)2'' F[r] [I + y[r] F+(u[r])] '

with Cp(t) being the specific heat.
Equations (15)-(19)constitute the main results of this

paper. They reveal the following three general features.
(i) A finite heat current drives the system away from

criticality, i.e. , z & 0, since (15) and (17) imply a finite,
Qo-dependent correlation length ([t,Qo] =g(r [t,Qo] ).

(ii) For T= T~ (or r, =O) the inverse length scale
([O, go] ' —(Qo/go)'/ constitutes the basic measure for
the distance from criticality (go=2.2x10'' sec ', Qo
has the units cm sec ').

(iii) The linear and nonlinear critical regimes are

identified as tX, t « I and tA, t 1, respectively; in the t

Qo plane this means t » t, and t ( t, with t, (go) given in

Eq. (21) below. This is illustrated in Fig. 1 together with
the range where previous experiments [4,7] have been

performed.
The measurable heat current Q (in units of W/cm ) is

related to our Qo by Q =kg Togo. In Fig. 2 we have plot-
ted [10] A, T[t,go]. We see that a finite Q implies a
depression of the critical temperature dependence. In the
range Q»0.07 pW/cm this depression dominates the
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FIG. l. Linear and nonlinear critical regimes in the t Q-
plane. The dashed line corresponds to X, = I, t = t, (Qp). The
range of previous experiments is indicated by the shaded areas
(TA, DZM, LC, Ref. [4]) and by the horizontal dashed lines
(DAS, Ref. [7]).

conventional gravity-induced rounding which will be fur-
ther discussed below. The temperature profile, Eq. (17),
can be written in the quasiscaling form

t(z, gp) =qG~(s), s =8+y[q]F[q]gp gp z, (20)

with q —=(Qpgp/gp)
' '-" and go=1.4 A. If nonasymptotic

effects of the effective parameters v[t] were negligible
G(i(s) would be universal, i.e., independent of Q. The
weak-scaling fixed point [Sl and the slow approach of the
specific heat to its finite value at criticality, however, im-

ply a weak nonuniversal Q dependence of Gg(s) in Fig. 3.
The finite heat current causes a finite temperature gra-
dient at T = Ti, [finite slope Gg(0)]. This corresponds to
a finite value of AT[0, gp] in Fig. 2.

One may define a crossover temperature t, (Qp) at.
which XT[t,gp] starts to deviate significantly (by more
than, say, 5%) from A, T[t,O] (arrows in Fig. 2). In the
range 10 ' (Q &10 W/cm our results can be repre-
sented as

t, (go) =&, (go(o'/go) "',

~T[ti ~gp] ~igpgp ~B(g 4p/ pg)p

(21)

(22)

itIT~/t)zi =pgidTi/8pi =1.3&&10 ' K/cm (23)

with the effective exponents x, = 0.74 = (2 v) ' and

yi =xi/2v=0. 31, where xi =0.42 is the effective ex-
ponent of XT [t,0] t ' for 10—"(t (10 . The same
exponent yi describes the divergence of Xr [0,gp] —Qp
Our one-loop results for the amplitudes are A, = 2.8 and
Hi=0.046 (Ref. [10]).

An experimental verification of these predictions would
constitute an important test of the RG theory in the
nonlinear-response regime. In deriving these predictions
we have neglected the eAect of gravity which causes a
spatial variation

[og „(T-T,)1 T„

FIG. 2. Theoretical prediction [Eq. (19)] for the thermal
conductivity vs reduced temperature for various values of the
heat current Q. The arrows indicate the crossover temperature
t, [Fq. (21)l.

of Ti„at Q =0 (Ref. [11]). Thus this effect will mask the
nonlinear temperature gradient BT(z,gp)/Bz induced by
the heat current if i8T(z, gp)/t)zi ( ir)Ti/Bzi in the re-
gion T(z, gp) = Ti, . From our results we estimate that in
an Earth-bound experiment this gravity eA'ect on the non-
linear part of T(z, gp) is negligible for Q)) 0.07 pW/cm
where

I
r)T/r)z

I
» lt)Ti/t]z I.

This regime has already been realized experimentally
[7] (compare Fig. 1) but the detailed form of the temper-
ature profile T(z, gp) was not detected. According to
Fig. 3, the nonlinear part of T(z, gp) varies on the scale
of O(10 cm) for a typical heat current Q =1 pW/cm,
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FIG. 3. Quasiscaling function Gg(s) of the reduced tempera-
ture profile t(z, Qp), Eqs. (5), (17), and (20), for various Q cor-
responding to I.ig. 2. The nonlinear region is s) —1.5. The
dashed line indicates T=Ti The arrow indicates .Gg(~) cor-
responding to t (~,Q ). 0
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and thus the requirement on the spatial resolution is rath-
er demanding. Here we propose an approach that pri-
marily needs high-resolution thermometry rather than
high spatial resolution. Consider the temperatures T]:T(z [,gp) and T2= T(z2, gp) measured at two fixed po-
sitions z

~
and z 2. Suppose that T ] and T2 are changed by

6T~ and 6T2 such that g remains unchanged and that
6T2 and BT] are measured. This would determine the
derivative (8T2/r)T ~ )g = h T2/6T ~

at fixed g. According
to Eq. (7), this yields

XT [tp, gp]
) T[ti, gp]

' (24)

as

x =[(d —I)v] (25)

and thus x =0.74 in d=3 dimensions. For the amplitude
we have found A =3.2 in one-loop order (arrow in Fig.
3). Equation (25) can be derived from dimensional

with t; =t(z;, Qp), i =1,2. The basic idea is to choose
(zp z ~ ~

&& (gp/gp) such that T~ is in the linear critical
regime well above T~ whereas T2 is in the nonlinear vicin-
ity of Tq. Since A, T[t~, gp] =XT[t~,O] is well known [4,5]
the measurement of r)T2/r)T~ determines the nonlinear
thermal conductivity XT[tz, gp] according to Eq. (24).
We estimate that for ST2 a temperature resolution (in
units of K) of about 10 "&&g (g in units of pW/cm )
is needed. Perturbing effects due to the boundary resis-
tance may be avoided in a ce11 with double midplane ther-
mometers being planned by Ahlers [11]. Experiments in

space would be advantageous in that they could explore
t (z, gp) at very small gp where the nonlinear portion of
t(z, gp) varies on a macroscopic length scale (gp/gp) 't,
for example, (gp/gp) 't =0. 1 mm for g =0.06 pW/cm .

Our result for t(z, gp), Eq. (17), is valid for z ~ 0 but
remains applicable also to 0(z ~O(go gp

' ) slightly
below Tx (Fig. 3) where the spatial variation of the order
parameter (y)(z) is still negligible. It would be interest-
ing to extend our calculation to the entire interface region
z ~ (go/go) ' . Here we report on an exact result in the
limit z ~. Apart from the effect of vortices we have
determined the exact exponent of

«,Qo) = —&-(go(o/go) '

analysis and from the fact that gp and gp are renormal-
ized by the same Z factor Z„, ' (Ref. [5]). Equation
(25) is consistent with one of the results by Onuki [6,12].
Although vortex generation may become important at
finite g it seems to be justified to compare our result (25)
with the measured [71 exponent x'""' =0.813 ~ 0.012,
since in this experiment the thermal gradient due to vor-
tices in the super[]uid appeared to be negligible [7]. Nev-
ertheless, the discrepancy between (25) and x"""' may
partially be due to the effect of vortices. Further experi-
mental and theoretical work on the profile t(z, gp) would
be desirable.
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