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We investigate the effect of a finite heat current Q on the superfluid transition of *“He. We perform a
renormalization-group (RG) calculation of the temperature profile and of the critical thermal conduc-
tivity A7(Q) in the nonlinear-response regime. In the experimentally accessible region close to 73 we
predict the divergence A7(Q)~Q ' with the effective exponent y»=0.31. An experiment is proposed
to detect this nonlinear effect. We also present the exact RG result x =(2v) ™' for the depression of the

transition temperature 7T — 75.(Q) ~Q~.

PACS numbers: 67.40.Pm, 64.60.Ht, 66.60.+a

The study of dynamic critical phenomena over the past
two decades has been focused primarily on equilibrium
properties in the linear-response regime [1] (except for a
few studies on nonlinear relaxation [1,2]) as well as on
those nonequilibrium properties where mean-field theory
provides an adequate description in some respects [3].
Very little is known about nonlinear effects due to finite
perturbations that bring the system out of equilibrium
without implying mean-field critical behavior. Of partic-
ular interest are systems with reversible couplings since
they have divergent transport coefficients [1], and thus
their crossover from the linear- to the nonlinear-response
regime is dominated by large fluctuation effects which
may be accessible to experimental observation. In this
Letter we present the first renormalization-group (RG)
study on an observable divergent transport coefficient in
the nonlinear-response regime where mean-field theory
fails even in a qualitative sense.

A well-suited candidate for this study is the thermal
conductivity A7(Qg) of bulk *He near T in the presence
of a finite heat current Qp. The critical behavior of A7(0)
is accurately known both experimentally [4] and theoreti-
cally [5]. No theory is available so far for the nonlinear
effect A7(Qo) —A7(0) apart from mean-field and scaling
considerations [6]. We shall see that this effect results in
a depression of the critical temperature dependence of A 7.
This is intimately related to the depression of the transi-
tion temperature 75(Qo) by a finite heat current that has
been recently observed [7]. Furthermore, we predict a
critical divergence A7(Q¢)~Qo ** for Qo— 0 in the
nonlinear-response regime near 75 with an effective ex-
ponent y, = 0.31.

Since there exists no critical behavior of A7 at the
mean-field level a RG treatment of the fluctuations is
necessary. Unlike the homogeneous situation for @Qo— 0,
the problem at finite Qo is highly nontrivial because of
the spatial inhomogeneity. Nevertheless, we are able to
perform a renormalized perturbation calculation and to
make a quantitative prediction on A7(Q¢) without an ad-
justment of parameters.

We start from the Langevin equations for the order pa-
rameter y(x,t) and the entropy variable m(x,7) of model
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F (Ref. [1]) in the presence of a heat source Wy:

SH SH
j=—2r +igowl 1o, . 1
4 0 5'/’* 1goy Sm v (
n‘1=AOV2§’% +goV- js+Wo+On, )

t=f atxCrolyl+ H IVl + ol
+ 5 x0 'm*+yom|yl|?), 3)

with j,(x,1)=Imly* (x,1)Vy(x,1)). A stationary heat
current Qg in the z direction is produced by

Wo(z) =Qol6(z+2") —6(z —2")], 4)

i.e., by a heat source and sink in the planes z= —z' and
z=z', respectively. Eventually we shall let z'— . A
possible Q¢ dependence of the Langevin forces is neglect-
ed. We shall always consider the stationary case. We
may interpret SH/8m =yim+ yo|y|? as a fluctuating lo-
cal temperature variable [8] and introduce the tempera-
ture profile 7(z,Qy) via the local reduced temperature

1(z,00) =T (z,00) — W)/ T,
=(ro—roc)/2vox0+{8H/6m) , (5)

where T, denotes the transition temperature at Qo=0.
Taking the average of Eq. (2) and integrating over z
leads to

}‘O%I(Z’QO)+g0<j.v)(Z,Q0)+QO=O' (6)

Our concept is to calculate (j;) and to integrate Eq. (6)
to obtain the stationary profile t(z,Q¢). The latter can
then be inverted to get z=z(z,Q0). We define a local
thermal conductivity by

-1
xr(z,Q0)=—Qo[—a%t(z,Qo)] )

=)»0[1+go<js>(z,Q0)/Q0] -! (8)

and substitute z =z(s,Q¢). This yields the temperature
dependence of the nonlinear thermal conductivity
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Arle,Qol =17 (2 (t,Q()),Q()) at finite Q.

The remaining task is the calculation of {j;>(z,Q0). In
the following we confine ourselves to T(z,09) 2 T. In
the mean-field approximation corresponding to go=7yo
=ii9=0, Egs. (1)-(4) yield

(m)MF=_Zo(Qo/7\.o)(Z_Zo) (9)

and (y)mr=0. Accordingly, we decompose m ={m)mp
+8m. Treating the fluctuations y(x,z) and ém(x,t) up
to one-loop order we obtain

(js2(z,00) =Im [%(w(x,t)w* (x’,t)>°|x'=,] , (10)

where the superscript index 0 of the dynamic propagator
(yy*)°=G° means that y,6m and the corresponding [

G ,00) = = ¥ (Qogo/AoT8)®12(Xo) [, lFo+k1 72,

where

®,(y)=r(p) "'Re [(—y) _”/3j;wdss”—'exp[~s3—s(—y) —153]

with (—yp) ==y ~136i3 for >0 and ®,(0) =1. At
Xo=0, Eq. (12) yields the one-loop term of the linear
thermal conductivity [5]. The nonlinear effect is con-
tained in

¥ 86 — Yoxogol 0

. (14)
re

Xo=—+ —276x3

6 ro

2]
Ao

An appropriate description of the critical behavior re-
quires renormalization of the bare perturbative result
(12)-(14). The renormalizations at Q¢=0 are well
known [5,9]. Since the ultraviolet divergences are not
changed by a finite heat current no new renormalizations

are necessary; thus we can express our results in terms of |

response fields y,8m are kept only up to second order in
the dynamic statistical weight. The difficulty of the prob-
lem is due to the spatial dependence of the temperature
variable

an

already at the mean-field level according to Egs. (5) and
(9). Here we have chosen the arbitrary constant zg such
that 7o vanishes at z=0. This choice fixes the nonlinear-
response region T(z,Q0) = T, of the temperature profile
at the origin of the z axis for arbitrary Qg, which is well
adapted to the investigation of the critical Q¢ depen-
dence. Expanding G ° with respect to Qo at fixed 7o leads
to a series that, for our case x'=x, can be summed up ex-
actly. The details of this calculation will be published
elsewhere. The result is, in three dimensions,

Folz,Q0) =ro+2yolmImr = — 2y0x0Qoz/ro

(12)

(13)

I(Z,Qo) =l‘r,{l - %f[t][r,_'/zcb_./z(x,)— I]} 5

c=— 4+ 22l lr 2 1Q0E(2) /g0l 2 (f ] =8yl 1F [z Iw" [z 1/w'[z] — 16y[21?w'l[2])

the known effective parameters [5,9] vlt], v =(w,v,F,
f,u), at Qo=0. The argument ¢, however, is replaced by
a Qo-dependent flow parameter 7(z,Q¢) which is deter-
mined implicitly by

r(z,00) +100&(z) ¥ gol*=1.
Here

r(z,Q0) = —8xyle1FIc1[Qo& (1) ?/golz/E(T)

15)

(16)

is the renormalized counterpart of the temperature vari-
able 7o [Eq. (11)], with £(¢) being the correlation length
above Ty (Ref. [4]). From (6) and (12)-(14) we obtain
the reduced temperature profile,

amn
(18)

where X, is the renormalized counterpart of Xo. Equation (15) can be combined with (17) to eliminate . and to get
7=1lt,00]. From (8) and (12)-(14) we then obtain the nonlinear thermal conductivity,

go['é(‘l' )kBCP(T)] 12
22 2F e 11 + y[212F 4 (ul< 1D} /2

kT[t,QO] =

{1 — 3/l r7 Py (X)) — 11 71,

19)

with Cp(t) being the specific heat. |

Equations (15)-(19) constitute the main results of this
paper. They reveal the following three general features.

(i) A finite heat current drives the system away from
criticality, i.e., T > 0, since (15) and (17) imply a finite,
Qo-dependent correlation length &lr,Qol=E(z [1,Q0l).

(ii) For T=T, (or r,=0) the inverse length scale
£10,00] ~' ~(Qo/g0) '/? constitutes the basic measure for
the distance from criticality (go=2.2x10"" sec ™!, Qo
has the units cm ~2sec 7).

(iii) The linear and nonlinear critical regimes are

identified as |X,| <1 and |X.|21, respectively; in the ¢-
Qo plane this means ¢ >, and t St with 1.(Qo) given in
Eq. (21) below. This is illustrated in Fig. 1 together with
the range where previous experiments [4,7] have been
performed.

The measurable heat current Q (in units of W/cm?) is
related to our Q¢ by Q =kgTiQo. In Fig. 2 we have plot-
ted [10] A7[7,Q0]. We see that a finite Q implies a
depression of the critical temperature dependence. In the
range Q>>0.07 uW/cm? this depression dominates the

3405



VOLUME 67, NUMBER 24

PHYSICAL REVIEW LETTERS

9 DECEMBER 1991

T T T T I T
L //_
. 65 Prage
= . d .
£ nonlinear Pre ]
L2 -
= 3f e .
= - e n
=R N /
= opDAS 7NN /T/A///%(
g .- /////DZM Z
N /AN |
d L | L l 1 1 L

-10 -8 -6 n 2
log,, [(T-T,)/T,]

FIG. 1. Linear and nonlinear critical regimes in the -Q
plane. The dashed line corresponds to X, =1, t = 1.(Qo). The
range of previous experiments is indicated by the shaded areas
(TA, DZM, LC, Ref. [4]) and by the horizontal dashed lines
(DAS, Ref. [7D).

conventional gravity-induced rounding which will be fur-
ther discussed below. The temperature profile, Eq. (17),
can be written in the quasiscaling form

1(z,00) =qGo(s), s=8nylqlFlqlQ4 gs "z, (20)

with ¢=(Q0&3/g0) '"?* and & =1.4 A. If nonasymptotic
effects of the effective parameters vlf] were negligible
Go(s) would be universal, i.e., independent of Q. The
weak-scaling fixed point [5] and the slow approach of the
specific heat to its finite value at criticality, however, im-
ply a weak nonuniversal Q dependence of G (s) in Fig. 3.
The finite heat current causes a finite temperature gra-
dient at T=T, [finite slope G$H(0)]. This corresponds to
a finite value of AT[0,Qo] in Fig. 2.

One may define a crossover temperature f.(Qo) at
which Arlz,Q0] starts to deviate significantly (by more
than, say, 5%) from AzI[z,0] (arrows in Fig. 2). In the
range 10 '°< 0 5102 W/em? our results can be repre-
sented as

1.(Q0) =A,(Qo&5/g0) ™, @n
Arlte,Qol = Argo&o 'kp(Qoté/g0) ™, 22)
with the effective exponents x,=0.74= (2v) ~' and

= xa/2v=0.31, where x,=0.42 is the effective ex-
ponent of A7[z,01~7 ™ for 10 "8<r<510~* The same
exponent y, describes the divergence of A7[0,00] ~Qo **.
Our one-loop results for the amplitudes are 4, = 2.8 and
A= 0.046 (Ref. [10]).

An experimental verification of these predictions would
constitute an important test of the RG theory in the
nonlinear-response regime. In deriving these predictions
we have neglected the effect of gravity which causes a
spatial variation

|807/8z| =pg|dT/8P| =1.3%10 "¢ K/cm (23)
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FIG. 2. Theoretical prediction [Eq. (19)] for the thermal
conductivity vs reduced temperature for various values of the
heat current Q. The arrows indicate the crossover temperature
t. [Eq. 211

of Ty at Q =0 (Ref. [11]). Thus this effect will mask the
nonlinear temperature gradient 87(z,Q0)/0z induced by
the heat current if |87(z,00)/9z| S|87:/8z] in the re-
gion T(z,Q¢) == T,. From our results we estimate that in
an Earth-bound experiment this gravity effect on the non-
linear part of T(z,Qo) is negligible for O >0.07 uW/cm?
where |87/8z| > |97T,/0z|.

This regime has already been realized experimentally
[7] (compare Fig. 1) but the detailed form of the temper-
ature profile 7(z,Q¢) was not detected. According to
Fig. 3, the nonlinear part of T(z,Q¢) varies on the scale
of 0(10 7* cm) for a typical heat current 9 =1 uW/cm?2,

2 0 T l T T T

15 .
=10* uW/cm?
Gqls) @=10"uWiem

10

1072
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-6 -4 -2 0 2

FIG. 3. Quasiscaling function Gg(s) of the reduced tempera-
ture profile ¢(z,Qo), Egs. (5), (17), and (20), for various Q cor-
responding to Fig. 2. The nonlinear region is s —1.5. The
dashed line indicates T=Ty. The arrow indicates G (o) cor-
responding to 1 (e0,Qy).
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and thus the requirement on the spatial resolution is rath-
er demanding. Here we propose an approach that pri-
marily needs high-resolution thermometry rather than
high spatial resolution. Consider the temperatures 7',
=T(z,,0Q0) and T,=T(z3,Q0) measured at two fixed po-
sitions z; and z,. Suppose that T\ and T, are changed by
6T, and 6T, such that Q remains unchanged and that
6T, and 8T, are measured. This would determine the
derivative (875/87T )9 = 6T>/6T) at fixed Q. According
to Eq. (7), this yields

97> _l___XT[Iz.QO]
a7, 0 Arle,Qol

with t;,=1(z;,0¢), i=1,2. The basic idea is to choose
|z, =z (g0/Q0) "/ such that T is in the linear critical
regime well above T, whereas T’ is in the nonlinear vicin-
ity of Ty. Since Arlt|,Q0l = A7lt1,0] is well known [4,5]
the measurement of 87,/0T, determines the nonlinear
thermal conductivity Arlt;,00] according to Eq. (24).
We estimate that for 6T, a temperature resolution (in
units of K) of about 10 "¥xQ** (Q in units of uW/cm?)
is needed. Perturbing effects due to the boundary resis-
tance may be avoided in a cell with double midplane ther-
mometers being planned by Ahlers [11]. Experiments in
space would be advantageous in that they could explore
t(z,Q0) at very small Q¢ where the nonlinear portion of
1(z,00) varies on a macroscopic length scale (go/Q) ',
for example, (g0/Qo) >=0.1 mm for Q =0.06 uW/cm?>.

Our result for 1(z,Q0), Eq. (17), is valid for z < 0 but
remains applicable also to 0 <z S0(gd?Q¢ ') slightly
below T (Fig. 3) where the spatial variation of the order
parameter {y)(z) is still negligible. It would be interest-
ing to extend our calculation to the entire interface region
22 (go/Q0) 2. Here we report on an exact result in the
limit z— oo, Apart from the effect of vortices we have
determined the exact exponent of

1(e0,00) = — Aw(Q0&3/g0)*

(24)

as
x=[d—1)v]1"", (25)

and thus x = 0.74 in d =3 dimensions. For the amplitude
we have found A =3.2 in one-loop order (arrow in Fig.
3). Equation (25) can be derived from dimensional

analysis and from the fact that Q¢ and g¢ are renormal-
ized by the same Z factor Z,; /2 (Ref. [5]). Equation
(25) is consistent with one of the results by Onuki [6,12].
Although vortex generation may become important at
finite Q it seems to be justified to compare our result (25)
with the measured [7] exponent x*P'=0.813+0.012,
since in this experiment the thermal gradient due to vor-
tices in the superfluid appeared to be negligible [7]. Nev-
ertheless, the discrepancy between (25) and x*™ may
partially be due to the effect of vortices. Further experi-
mental and theoretical work on the profile #(z,Q) would
be desirable.
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