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Low-Dimensional Chaotic Attractors in Drift-Wave Turbulence
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Simulation results of toroidal g;-mode turbulence are analyzed using mathematical tools of nonlinear
dynamics. Low-dimensional chaotic attractors are found in the strongly nonlinear regime while in the
weakly interacting regime the dynamics is high dimensional. In both regimes, the solutions are found to
display sensitive dependence on initial conditions, characterized by a positive largest Liapunov exponent.
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In 1963, Lorenz [I], and later Ruelle and Takens [2],
suggested that the transition to Auid turbulence can be in-
itiated by strange (chaotic) attractors. Since then, a
number of results have been reported in support of this
scenario. For example, turbulent solutions of the
Navier-Stokes equations have shown low-dimensional
chaotic features [3]. Furthermore, experimental evidence
has been presented for the presence of low-dimensional
chaotic attractors in certain hydrodynamic systems, like,
e.g. , in Couette-Taylor flow [4] and in Rayleigh-Benard
convection [51. Chaotic behavior and period doubling
have also been observed in pulsed plasma discharges [6].

Fluctuation-driven particle and energy transport are
considered to represent major obstacles in the striving for
achieving thermonuclear fusion in magnetically confined
plasmas. During the last decade, a considerable amount
of work has been done trying to correlate the experimen-
tally observed transport with predictions based on various
nonlinear drift-wave and magnetohydrodynamic models
[7]. In present day high-temperature tokamak experi-
ments, the temperature-gradient-driven drift waves have
attracted a strong interest. Among these, the inter-
changelike toroidal ti; mode [8-10] (ti; =d lnT;/d inn;),
which is driven by the combined effects of the ion temper-
ature gradient and the magnetic-field curvature, is con-
sidered as one of the serious candidates for explaining the
anomalous ion heat loss in tokamaks.

In this Letter, Auid simulations of toroidal g;-mode
turbulence are analyzed in the context of nonlinear dy-
namics. The correlation dimension is calculated for a
range of equilibrium parameters. In addition, to charac-
terize the chaotic motion on the attractor, the largest
Liapunov exponent is calculated by following the ex-
ponential separation of nearby orbits in phase space. For
the first time, simulation results are presented indicating
that for certain tokamak equilibria the drift-wave dynam-
ics is characterized by low-dimensional chaotic attractors.
In these configurations, a few active degrees of freedom,
rather than the infinite number of modes associated with

the fully developed turbulence, are responsible for the
transport.

The model used is an improved two-dimensional (i.e.,
in the poloidal plane), hydrodynamic ion model [11],val-
id for arbitrary L„/Ltt (the scale length of the density and
the magnetic-field gradients), together with an adiabatic
electron response. Combining the ion continuity and en-

ergy equations gives the following nonlinear evolution
equations for the perturbed electrostatic potential p and
ion temperature T [12]:
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where e„=2L„/Ltt, ti; =L„/L~z , and r =T„/T;. In E.qs.
(1) and (2) we have used the dimensionless variables
(x,y) p, (x,y) and t L„t/cvv where c, =(T„/m;)'I,
p, =c,/0, .;, II,.; =eB/mc, and where (x,y) represents
coordinates in the radial and poloidal direction. The
fields have been normalized as
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The model includes first-order finite-Larmor-radii effects
(FLR), polarization drift efl'ects, and compressibility due
to field curvature. For simplicity, parallel ion dynamics
and magnetic shear have been neglected in the present
study. The dominant nonlinearities arise from the Ex B
convection and we have vF. Vf =z Vp&Vf= [p f] The— .
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simulations (for details see Ref. [12] and references
therein) were performed on a 64X64 grid spanning
—2.25 ~ k,p, , k, ,p, ~ 2.25, using a fully dealiased spec-
tral method. In the simulations, each field is artifically
damped at high and low k [13] to represent the effect of
high-k viscosity and low-k ion Landau damping, respec-
tively, i.e. , we have y=yo(1 —k /ko) for k ~ ko and

y = y at k ~ k with typically kp =0.5, y'p =0.6,
k =1.5, y =2 used in the simulations. The turbulence
level and transport are largely insensitive to the high-k
dissipation whereas the dependence on the low-k dissipa-
tion rates are stronger (see, e.g. , Ref. [12]). However,
for reasonable values, the chaotic features studied in this
paper are only weakly dependent on yp.

The linear theory can provide useful indications of
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where co+, is the electron diamagnetic drift frequency
and where the threshold g; value is

what to expect from the nonlinear simulations. Neglect-
ing the convective nonlinearities in Eqs. (1) and (2), a
quadratic dispersion relation is obtained [11], which in

the limit kp, /s„« I gives the real part of the frequency
and the growth rate as
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Thus, the mode propagates in the ion diamagnetic drift
~

direction (i.e., in the negative y direction) for s„~0.2
(co„&0), and the real part of the frequency is only weak-

ly dependent on g; through the FLR term. In a region
above marginal stability and with e„~0 5 we have
co, ) y and the turbulence is defined as weak [14]. In this
regime, corresponding to the main part of the good
confinement region in tokamaks, a good agreement be-
tween quasilinear ion heat cruxes and nonlinear simula-
tion results have been obtained [12]. For s„=0.2
(to, =0) on the other hand, a strong Iluidlike instability
with y~ co, develops even close to marginal stability.
Here the quasilinear approximation is not applicable.

The g;-e„stability boundary for the fastest growing
mode (k p, =0.1) is given in Fig. 1. For tlat density
profiles (s„ large), the stability threshold is independent
of L„and onset of instability requires only a sufficiently
steep ion temperature gradient. Here, the turbulence is

expected to be weak. This regime is particularly relevant
to H-mode discharges and also to L-mode plasmas close
to the q=1 surface where the density profile is relatively
flat. In the edge region on the other hand, s„ is small and
the model suggests a strongly nonlinear regime.

The time evolution of a single degree of freedom, such
as a Fourier mode of the potential perturbations, is used
to reconstruct the attractor utilizing an embedding tech-
nique [15]. In this procedure, a D, -dimensional orbit is
constructed from the vectors [Pi, (t),Pi, (t+r), . . . , itii, (t
+(D,, —1)r)j, where p is taken as the real part of the
potential p in the nonlinearly saturated state after the ini-

tial transients have died away. For a suSciently large
embedding dimension D„and for a set of values of the de-
lay time r the Liapunov exponent and the correlation di-
mension are found to converge. Using the technique of
Grassberger and Procaccia [16], the correlation dimen-
sion
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F'IG. l. The linear stability boundary in the g;-e„plane with
r =1 and k -'p. =O. l.

is obtained from the slope of In[C(r)] vs lnr. The corre-
lation sum C(r), the number of pairs whose separation
distance is less than r over the number of pairs, in the
limit of a densely covered attractor, approximates the
probability that two points on the attractor are separated
by a distance less than r. The limit r 0 is obtained by
increasing the number of data points until C(r) con-
verges.

Examples of some correlation dimensions calculated
using this technique are shown in Fig. 2, where they have
been plotted versus the embedding dimension. The
diAerent cases plotted, which are marked in Fig. 1, were
carried out using 25000 data points obtained from the
simulations and with a delay of 10. Note that the small-
~„cases are low dimensional while the large-c„cases have
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FIG. 2. The correlation dimension vs the embedding dimen-
sion calculated from 25000 points with a delay of 10.

FIG. 3. The correlation dimension vs the number of points
on the attractor for two difTerent embedding dimensions D,

higher dimensions (the latter are not found to converge
within the computational limits). Hence, for equilibria
with y~ co, where the nonlinear interaction is expected
to be strong, the dynamics is low dimensional, while in
the weak coupling limit co„& y, the attractor is of higher
dimension. This suggests that the coupling between the
modes play an important role in determining whether the
dynamics is high or low dimensional. The conclusion is
supported by the observation that for equilibria with the
same e„, an increased g;, resulting linearly in an in-
creased y/to„and nonlinearly in higher saturated Auctua-
tion levels, may locally result in an attractor of lower di-
mension. The latter is apparent in the low-dimensional
low-~„cases in Fig. 2 where the g; =3 case has a lower
dimension and a higher y„/ro, ratio than the cases with

q; =1.8 and 1.6.
A close examination of the correlation dimension sug-

gests that the low-dimensional attractors are fractals with
correlation dimensions less than 3. To some extent the
results presented in this Letter are consistent with obser-
vations in quid dynamics where low-dimensional chaotic
attractors are observed [4,5] in situations with strong
nonlinear coupling.

The question of convergence and reliability in the di-
mension measurements is obviously of prime importance.
The convergence with respect to the number of points on
the attractor is exemplified in Fig. 3 where the correlation
dimension is plotted'versus the number of points for two
different embedding dimensions D, for g; =3, e„=0.18,
and a delay of 10. Note the decreasing difference be-
tween the D, =3 and D, =5 cases as the number of points
on the attractor increases. The correlation dimension as
given by Eq. (5) gives a value averaged over the attrac-
tor. In order to determine the uncertainty and spread of
values over the attractor the standard deviation of the
pointwise correlation dimensions has been calculated.
The results are indicated by the error bars in Fig. 3.
Note that while decreasing with increasing number of

data points the standard deviation (0.37 in comparison
with the averaged value of 2.40) is fairly large even with
50000 data points. Takens's theorem [15] states that, ex-
cept for unfortunate choices, the embedding is indepen-
dent of the delay. However, for practical purposes it is
obvious that too large and too small delays give poor re-
sults and only a relatively narrow set of delays are ap-
propriate. We have found a delay of 10 to be a good
choice for the calculations. The nonsaturated curves for
the high-dimensional cases might actually saturate at rel-
atively low values of the correlation dimension (D & 10)
if a suScient number of points could be handled. Howev-
er, due to the extensive computations involved, both in
the data generating simulations and during the correla-
tion calculations, this is not feasible. We have therefore
adopted the terminology that a system is low dimensional
if it shows a clear sign of convergence when the number
of points used in the calculation, restricted by the com-
puter time, equals 10,.'.

To investigate the chaoticity or sensitive dependence on
initial conditions, for these attractors, we compute the
largest Liapunov characteristic exponent using an algo-
rithm similar to that by Wolf et al. [17]. Starting from
an initial point on the attractor [pk(to), pk (to+ r), . . . ,

pk (to+ (D,. —1)r )j and finding the distance to the
nearest neighbor, L(to), it is propagated to a time t~

when the initial length has evolved to length L'(t~). Us-
ing a replacement point and repeating this procedure we
obtain an estimation of the maximum Liapunov exponent
as

M Z'(t )g ln
tnt to k=1 L(tk —i)

where M is the number of replacement steps. Using files
of up to 50000 data points in eight-dimensional recon-
structions of the attractor, a positive maximum Liapunov
exponent was found in all examined cases. Hence, the
low-dimensional attractors observed for low e„are chaot-
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dimensional chaotic attractors occurring in cases of
strong and weak nonlinear coupling, respectively, are be-
lieved to be generic for the g; modes and possibly for sys-
tems of drift-wave type in general. Work is under way to
test this hypothesis and to establish the details of the
transition from high- to low-dimensional attractors as
well as the transition from nonchaotic to chaotic attrac-
tors.

The authors would like to thank B. I. Henry and 3.
Weiland for useful comments on the manuscript. Thanks
are also due to H. G. Gustavsson for advice on the nu-

merical algorithms. The calculations in the paper were
partly carried out using the Fujitsu VP-100 at the Aus-
tralian National University Supercomputer Facility.

FIG. 4. The largest Liapunov exponent X~ (in units of cr/I. „)
as a function of rl;/rl, &h for s„=I, r = I, rl;, h =1.78 and with an
embedding dimension of D,. =8.

ic. It is interesting to note that the motion on the high-
dimensional at tractors appears to be chaotic too, al-
though in this regime a simple quasilinear approximation
has been found to adequately reproduce the ion energy
transport [I2]. However, the turbulence is here weakly
chaotic in the sense that the time scale of the exponential
separation of nearby orbits is slower than the time scale
of the linear instability. The Liapunov exponent general-
ly increases with increasing g;, as shown in Fig. 4. The
given values of A, ~ are weakly dependent on the embed-
ding D,„delay r, etc. , but our interest here is in the scal-
ing of k~ with g;, and this is independent of the embed-
ding parameters. For the parameter values in Fig. 4, the
real frequency as given by Eq. (3) is ru, = —0.5 (in units
of c,/I„, k p, =0.1), i. .e. , we have ~co„~ &k~.

In conclusion, low-dimensional chaotic attractors have
been observed in the strongly nonlinear regime of toroidal
g;-mode turbulence. Chaos was also found in the weakly
nonlinear regime, but here the attractors were of higher
dimension ()6). When applied to tokamak equilibria,
the model suggests the presence of low-dimensional
chaotic attractors preferably in L-mode discharges and in

the outer part of the good confinement region, while in

the flat density regime associated with the core region of
H-mode discharges, the dynamics is high dimensional.
While the detailed results of the calculations presented in

this Letter are likely to be model dependent, the qualita-
tive features emphasized in this work, the low- and high-
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