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Noise-Sustained Structure in Taylor-Couette Flow with Through Flow
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We report experimental and theoretical results for the absolute and convective instability boundaries
in Taylor-Couette flow with imposed axial flow as a function of the axial Reynolds number. Experiment
and theory agree quantitatively. In the downstream region of a large-aspect-ratio system, noise-
sustained structures of traveling vortices exist in much of the convectively unstable regime. These struc-
tures have a nearly time-independent amplitude, but a noisy phase. The phase noise ceases abruptly
upon crossing the absolute instability boundary.

PACS numbers: 47.20.—k, 43.50.+y, 47.25.Mr

The sensitivity of open flows to perturbations has been
well documented since Leconte observed "musically in-
clined" jets responsive to acoustic excitation [1]. Nu-

merous examples exist for open systems such as pipe and
channel flows and obstacle wakes [2,3]. However, the
role of noise in destabilizing laminar states and producing
turbulence remains unclear.

In open systems it is important to distinguish between

absolutely unstable flows, in which disturbances grow at
any fixed point, and convectively unstable ones, in which

fluctuations grow only in a comoving frame [4-6]. In the
latter case, individual fluctuations grow as they are ad-
vected downstream, but are eventually "blown out" of the
system so that no permanent structure is produced in the
absence of noise or perturbations. However, in a study
of a complex Ginzburg-Landau (CGL) equation which

models many open flows, it was found that a weak but
persistent noise source generated sustained structures in

the downstream portion of the system [7].
In this Letter we describe an investigation of stability

and noise in an open flow, namely, Taylor-Couette flow

between concentric cylinders [8] with imposed axial flow.

Experimentally we find that if the system is sufficiently

long, noise-sustained structure predominates when the
base flow is convectively unstable. The observed struc-
tures are patterns of traveling Taylor vortices whose

phase varies irregularly with time. This irregularity van-

ishes within our resolution at the transition from convec-
tive to absolute instability. We presume that the patterns
are sustained by noise originating in the inlet region. As
shown below, noise eflects can be observed near the onset
of the centrifugal (Taylor) instability even at small axial
Reynolds numbers R ~4. Our observations clarify the
interplay between noise and stability, and permit a quan-
titative description by the appropriate CGL equation.

The experiments were performed in a modified Tay-
lor-Couette apparatus with the inner cylinder rotating. A
recirculating gravity feed generated axial flow whose rate
was controlled to an accuracy of 0.2%. The radius ratio
r~/rq was 0.738 and the aspect ratio L/d was 144. Here
d =r2 —r] and the total length L =98 cm. Both cylinders
were concentric and straight to ~0.04 mm. We used
water-glycerol mixtUres seeded with 1% Kalliroscope sus-

pension by volume for flow visualization. A computer-

interfaced charge-coupled-device camera recorded scan
lines and time series of reflected light. The fluid tempera-
ture was controlled to better than + 30 mK. Before
entering the gap, the fluid passed through an annulus
containing eight holes of diameter 1.1 mm, followed by
two layers of 0.44-mm-mesh stainless-steel screen to pro-
duce azimuthally uniform axial flow.

This system has two control parameters. One is the axi-
al Reynolds number R=(w)d/v, where (w) is the mean
axial flow velocity and v the kinematic viscosity. The
second is the reduced angular rotation frequency of the
inner cylinder e=—to/too —1, where too refers to the onset
of Taylor-vortex flow at R =0 [8]. The structureless base
flow, comprised of circular Couette flow superimposed
with axial Poiseuille flow, first becomes unstable to travel-
ing vortices [9]. Recently, the distinction between con-
vective and absolute instability has been examined for
this system [10] and for thermal convection with through
flow [11]. Below we describe high-resolution measure-
ments of the convective and absolute instability regimes
made possible by the long aspect ratio of our apparatus.

We found that convective instability could be directly
observed by generating localized perturbations in the base
flow at fixed t. and R. This was done by rotating both
cylinders about their axis back and forth once through a
small angle [12]. As shown in the space-time plot of Fig.
1, a pulse localized to within two or three vortex pairs ap-
peared at the inlet and traveled into the system. The
pulse initially decayed over a fraction of the distance
(w)d /v, which is approximately that required for the in-

let flow to attain the angular momentum of the base flow.
The pulse then spread, grew in amplitude, and was ad-
vected out of the system. To probe the onset of convec-
tive instability, time series of reflected light were recorded
as pulses passed a point 100d from the inlet. The ampli-
tude of the fundamental peak in the discrete Fourier
transform (DFT) was found for pulses at various e for
given R. Reducing e caused slower pulse growth, and
hence weaker signals at the observation point. The inter-
section of the DFT peak amplitude with the noise base
line was taken as the onset of convective instability e,
Figure 2 shows the results for R ~20. At larger R, spiral
modes [13] grew and complicated the measurements.

We also calculated numerically the onset of convective
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FIG. 1. Pulse growth in the convectively unstable regime;
R =16.5 and a=0. 160. At time t =0.2, the apparatus was
rocked back and forth once. The length shown is about L/6.

instability for our experimental geometry from the
Navier-Stokes equations. Instability to modes of the
form exp[i(kz —At+mB)] was examined, where t is the
time, and z and 6 are the axial and azimuthal coordi-
nates, respectively. For axisymmetric modes (m =0),
the results are well fitted by e, =0.000 381R (1 —9.3
X10 'R ), shown as the solid curve in Fig. 2. They are
in excellent agreement with our measurements [14], and
are consistent with previous calculations for other radius
ratios [13].

For e suSciently greater than e,. , structure was ob-
served in the absence of applied perturbations. Figure 3
shows space-time plots of traveling vortex patterns at
several e for R =3.0. The pattern amplitude was roughly
time independent at a given position, but decreased to
zero, or nearly zero, at the inlet because the flow entered
with no azimuthal velocity. The spatial growth may be
measured by the healing length II, at which the pattern
reaches half its maximum amplitude [11]. As can be
seen in Fig. 3, lI, grew and the amplitude of the pattern at
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FIG. 3. Space-time plots of patterns at R =3.0, showing the
increase in healing length li, as e decreases. Top to bottom:
a=0. 1020, 0.0822, 0.0632, and 0.0347. About —' of the ap-
paratus is shown.

large z decreased as e was reduced.
A recent numerical study of thermal convection with

through flow found that, in the absence of noise, patterns
resembling those in Fig. 3 arose only in the absolutely un-
stable regime [11]. The healing length l& increased as E

was reduced, and diverged at the boundary t., between
convective and absolute instability. However, as suggest-
ed by the CGL equation [7], one expects that noise-
sustained structure with finite lp can exist in the convec-
tively unstable regimes of real systems. We shall see that
the lower two plots in Fig. 3 are examples of such struc-
tures. A diagnostic other than the behavior of lp is thus
necessary to locate e, in the presence of noise.

Detailed examination of the structures of Fig. 3 re-
vealed a qualitative change as t. was reduced. After
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FIG. 2. Convective instability boundary e, obtained by ob-
serving pulse growth. The curve is the linear stability result.
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FIG. 4. Time series, and DFT moduli near the fundamental

peak, at z =100d for R =3.0. About 4 of each series is shown.
(a) i.' —i. , =0.0896. (b) i.' —e, =0.0318. The DFT peak shows
considerable broadening. In (c), structure persists at small
t. —t, =0.0077.
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fixing e and R and waiting for transients to die away,
time series of reAected light were recorded for z =100d.
Figure 4 shows portions of time series and corresponding
DFT moduli for various e at R =3.0. Each series covered
about 160 periods and contained 2048 points. In Fig.
4(a), e —c, =0.0896, and the data appear periodic and of
nearly uniform amplitude. The corresponding fundamen-
tal DFT peak is very sharp. At e —e, =0.0318 in Fig.
4(b), the time series remains fairly uniform in amplitude,
but the DFT peak has become much broader. Demodula-
tion shows that this broadening is due to irregular time
dependence of the phase. As shown for t..—t., =0.0077 in

Fig. 4(c), sustained patterns persist to small e —e„but
the amplitude shows time variation, and the DFT remains
broad. The transition in spectral width can be character-
ized by the normalized variance of the fundamental peak
in the power spectrum o =((f—(f)) )/(f), calculated
by integrating over frequencies in the vicinity of the
fundamental component. The experimental result for a
range of e at R =3.0 is shown in Fig. 5(a). The sharp in-

crease in o. below a=0.065 corresponds to the onset of
phase noise.

Simulations of the CGL equation

ro(A+sA') =F(1+ico)A+go(1+ic~)A"
—g(1+icy) ~A ~

'A (1)
showed that the transition in a (e) is related to the
boundary dividing absolute and convective instability.
Equation (1) is derived from an expansion around e, .
Here e =ru/ru, . (R) —

1 =(e —e, )/(1+a, .), and s cc R is

the group velocity of the critical mode at onset. Length
and time are scaled by the gap d and diffusion time d /v,
respectively. For the linear terms, coefficients specific to
our geometry were obtained from the stability analysis
described above [15]. A discrete version of Eq. (1) was

numerically integrated. Noise was modeled by choosing
random values for the real and imaginary parts of
A(z =0) at each time step, a form chosen because the
most relevant noise originates in the inlet region. Values
were uniformly distributed between ~ n, where we call n
the noise level. We mimicked the experiment by analyz-
ing time series of the function O'=Re{A(z, t)exp[i(k, z—O, .t)]J at z =100d. The time series and their DFTs
closely resembled their experimental counterparts. As
shown in Fig. 5(b), the peak variance a undergoes a
transition remarkably similar to that in the experiment.
Demodulation shows that the broadening is again due to
phase noise.

It is readily shown [7,11] that the boundary between
convective and absolute instability in Eq. (1) occurs at
e', =(sro/2(o) /(1+el ). The vertical dashed line in

Fig. 5(b) corresponds to e, " for our geometry at R
=3.0. The onset of phase noise is clearly identified with

and is also insensitive to the noise level. The onset
varied less than Bt..= ~ 0.005 for 10 ~ n ~ 10
where onset is taken to be the point where the variance
o first departs from the base line. Thus, even though the
physical noise source and level are uncertain, we are
confident that the experimental transition to phase noise
corresponds to the boundary e, .

Figure 6 shows the complete stability diagram for ax-
isymmetric patterns up to R=4.0. The upper data points
mark e„ identified by the transition to phase noise. For
R~4, spiral modes grew and interfered with measure-
ments of e, . We calculated the absolute stability bound-
ary from the full equations [16], using methods outlined
in Refs. [5] and [6]. The results are well fitted by e,
=0.00782R (1 —0.0043R ), and are shown as the upper
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FIG. 5. (a) Normalized variance of the fundamental peak in

the DFT power vs e at R =3.0 for time series at z =100d. The
transition at a=0.065 indicates the onset of phase noise. (b)
Corresponding results for Eq. (l) for noise levels lO " (x),
lO ' (A), and lO (o), respectively. The dashed line locates"=0.071.-
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FIG. 6. Stability diagram for axisymmetric structures. The
lower points and solid curve are for the onset of convective in-
stability. The upper data points locate the experimental transi-
tion to phase noise, the upper solid curve is the linear stability
result for e, and the dash-dotted line is t.' . Open symbols in-
dicate the boundary e., for noise-sustained structure at z =25d
(A), z =50d (o), and z =100d (a). The dotted lines are the es-
timates of e, given by Eq. (2) with A;,/Ao =590.
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solid curve. The lower set of data points is for the con-
vective instability boundary e„and the corresponding
solid curve is the linear stability result. Experiment and
theory agree very well for both boundaries. The upper
dash-dotted curve is the CGL result e, "=0.00789R (1
—0.0008R ). Its close agreement with the experiment
and the full equations suggests that Eq. (1) applies rather
well throughout the parameter range of Fig. 6.

With the stability boundaries precisely located, we can
be sure that structures observed at t. & t.„such as the
lower two plots of Fig. 3, are sustained by noise. We
measured e„ the minimum t. for which structure was ob-
served, at various distances from the inlet. A spectral
method similar to that employed in measuring the con-
vective instability boundary was used. The results for
z =25d, 50d, and 100d are shown in Fig. 6 as open sym-
bols. Further from the inlet, structure was observed at
increasingly smaller e, because fluctuations had more
time to grow. In the limit of very large aspect ratio, the
boundary t. , approaches e„and noise-sustained structure
predominates in the convectively unstable regime [17].

The eflects of noise can be modeled by an eflective in-
let boundary condition Ao &0 which gives rise to a
time-independent amplitude

~(z) =&o expbe. ' '[I —(1 —e/e, ) ' ']/&o] (2)
obtained as the solution of the linear part of Eq. (I). We
may invert this expression for e to give e=e, . +(I+a, )e.
After inserting the linear stability values for e,., e„and
go, this provides an estimate of the structure boundary e,,
with the single free parameter 2;„/Ao . Here 2;„ is
the minimum experimentally detectable amplitude which
prevails at e, . A fit to the data gives 2;„/Ao =600.
The corresponding estimate of e, is shown as the dashed
lines in Fig. 6. The estimate A;„=10 determined in a
similar experimental configuration [18,19] yields Ao
=2&&10 . From simulations of Eq. (1), we find that a
noise level about an order of magnitude larger than Ao,
or n=2x10, produces amplitude profiles that match
the data. These values motivated the choice of noise lev-
els shown in Fig. 5(b).

I n conclusion, we have shown that noise-sustained
structure predominates in a convectively unstable open
flow. The increase in phase noise at the transition from
absolute to convective instability may serve as a useful di-
agnostic in other open flows (for example, object wakes
[5]) which possess both instability regimes.
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