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Photoacoustic Monopole Radiation in One, Two, and Three Dimensions
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We show that the photoacoustic pressure in one, two, and three dimensions can be found as mappings
of the optical deposition of heat in space for short optical radiation pulses. In addition, we find the pho-
toacoustic pressure to be proportional to the zeroth derivative in one dimension, the one-half derivative in
two dimensions, and the first derivative in three dimensions of the optical radiation intensity for long
pulses. Experiments with fluid layers, cylinders, and droplets give ultrasonic wave forms that are in gen-
eral agreement with the theorems.

PACS numbers: 43.20.+g, 43.90.+v
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where p is determined from p = —pf 8&/rit, c is the sound
speed, pf is the Auid density, P is the isobaric volume ex-
pansion coefficient, Cp is the heat capacity per unit mass,
t is the time, and H is the heating function defined as the
thermal energy per time and volume deposited by the op-
tical beam. Here, we use a Green's-function solution [10]
to the wave equation for the velocity potential,

p f I
dt' dx'g(x, t

~
t'x)H(x', t'), (2)p~0

where (gx, t~ xt') is the Green's function for an infinite
medium.

In one dimension, the appropriate Green's function (for

y(x, t) =—

Investigation of the photoacoustic eAect [1] in Auids

has been motivated to a large extent by its numerous ap-
plications in spectroscopy, chemical kinetics and analysis,
and trace detection where a knowledge of the amplitude
dependence of the effect is essential for the interpretation
of experimental data. Recently, experiments with Quid

bodies [2] have shown that information regarding the di-
mensions, geometry, sound speed, and density of an irra-
diated body can be found from the shape of its pho-
toacoustic wave form. Such experiments point up the
question of precisely how ultrasonic wave forms are
governed by both the physical characteristics of the irra-
diated body and the properties of the optical exciting
pulse.

Here, we derive three theorems for short-pulse excita-
tion of Auid bodies that give the temporal profiles of pho-
toacoustic waves as mappings of the spatial distribution
of heat created by the absorption of optical radiation,
thus obviating solution of the wave equation for pressure
[3-7]. Furthermore, we prove theorems in one, two, and
three dimensions that describe the temporal profiles of
photoacoustic waves excited by long optical pulses. We
also report experiments with Auid layers, cylinders, and
droplets.

The photoacoustic effect is governed by a wave equa-
tion for pressure [8,9], which can be written in terms of a
velocity potential p as

z & z') is g(x, t ~x, t') =2trcu((t —t') —(z —z')/c), where
u(() is the Heaviside function. Substitution of the one-
dimensional Green's function into Eq. (2) followed by
differentiation of the resulting velocity potential gives the
photoacoustic pressure as the space integral
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p(z, t) = „dz'H z', t— (3)
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Consider a heating function of the form H((, t)
=aEoh(()6(t), where a is the optical absorption coef-
ficient, Eo is the energy fluence in the light beam, and
h(() is a spatial heating function written as a function of
a generalized dimension less space coordinate (=g/go
(where g is z in one dimension, p in two dimensions, or r
in three dimensions), and go is the length parameter for
absorption. On substitution of the above heating function
into Eq. (3) and evaluation of the resulting integral, we
find the photoacoustic wave at a field point located along
the positive z axis for t & 0 to be the mapping

p(r"p) = —,
'

tch (r"o), (4)
where the dimensionless retarded time from the origin T":0

is given by ro=(c/(0)(t —g/c) and where ic=apEoc /
Cp.

Consider the analogous problem for a spherically sym-
metric deposition of heat. The wave equation for the ve-

locity potential, which contains only a single radial space
derivative, reduces to a one-dimensional wave equation
(with H replaced by rH) on introduction of the variable
pt =rp. The one-dimensional Green's function given
above can be used for a solution, but must be modified to
include the eA'ect of an inwardly propagating spherical
wave, which is launched simultaneously with the out-
wardly traveling wave, and which is reAected at the ori-
gin, reaching the field point with an inverted amplitude.
The Green's function for Eq. (2) must therefore be the
sum of two one-dimensional Green's functions g(r, t ~r',
t') g(r, tl —r', t'), —which gives the photoacoustic pres-
sure as

c ~ . . . r —r'
p(r, t) = dr'r' H r', t-
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r+r'—H r', t—
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For a 8-function heating pulse in time, we thus find the
photoacoustic pressure for t & 0 to be given by the map-

ping

p(io) =(x/2r)io[h( —ip)+h(ip)] . (6)

„.deaf'(~ j)(j —P') -'"= , h(p), —

which is valid for both the positive and negative signs. To
find the source function we transform this expression us-

ing a variation of Firsov s inversion [7,11,12] which gives

f(g)= —— . dp
h()

( 2 2) I/2

As examples of the use of the three theorems for short
optical pulses, we consider an optically thin, infinite Auid

layer, a fluid cylinder, and a droplet. The spatial heating
function for these bodies is given by h(() =Op ~(l g),
where e; /(g) is a square wave function defined as unity
for g between i and j, and as zero otherwise. Equations
(4), (6), and (7) give the photoacoustic pressure (see Fig.
1) for i & 0 in one, two (with p»1), and three dimen-

sions as

p (i) = —,
' xep, (i ),

1C g+1
(-+ i) '"[1—(q+1)'1 '"

(i 0)

p (i) = ( tc/2r") ( i —') [e., , (.) ++ l, 2 (i ) ] ~

respectively, where r" is the dimensionless retarded time
from the edge of the body defined as i=(c/go)[t (&

&o)/c], and 8 is the lesser of 2 or r".

Consider now the case when the exciting optical pulse
has a duration far greater than the transit time of sound
across the absorption length in the irradiated body. We
first solve the problem in the frequency domain by taking
a heating function of the form H(g, t) =aloh(()e
which, in one dimension, according to Eq. (3), gives the

For a cylindrically symmetric source, we find the pho-
toacoustic wave generated by a 6-function heating pulse

by expressing Eq. (6) in terms of cylindrical coordinates z
and p [i.e., r=(p +z )' ] and integrating the result
over the z axis. This procedure gives the photoacoustic
pressure as

p(p t ) "'d( f'(+f'

(7)
[(t —j)' —p'] ' '

where f'(g) is the derivative of a source function, the
form of which is not yet specified, and t =ct/po Now . im-

mediately after absorption of radiation from a 6'-function

optical pulse in time, the spatial profile of the acoustic
pressure in the fluid must equal hach(p). Since cylindrical-

ly symmetric waves are simultaneously launched inwardly
and outwardly from the z axis, the pressure is constrained
at t =0 by the initial condition

acoustic pressure as an integral over space of the spatial
heating function with the factor exp( —iaiz'/c) S. ince
the integration extends only over the source, we approxi-
mate the exponential function as unity, giving a constant
for the space integration. The low-frequency response of
the distribution and its corresponding Fourier transform
thus become

A A

p/
= (aPlp&/c/2Cp)e '"", p/(x"/) = —, tc6(i/), (i 2)

respectively, where q/ =tug//c, r"/ =(c/(/)(t —(/c), and
(in n dimensions) g/" =fo d( g" 'h (().

In three dimensions, we find the photoacoustic pressure
for a spherically symmetric deposition of heat by substi-
tution of the frequency domain heating function above
into Eq. (S). Again, the integration is over a region of
space small compared with the acoustic wavelength.
Thus we approximate the diAerence of the two exponen-
tial functions as proportional to the radial derivative of
exp( —it12r). This gives the low-frequency response of
the spherical distribution and its corresponding Fourier
transform as

aPlo(t c d — ... rc d
p/ = e '"", p/(i() =— 6(i/),

Cpr( dr r( dT(
(i3)

A A

p/ =(traPIO(tc/2Cp)q/Ho' (q/p/)e

d tt (t/ p/)

dt (t2 — ')'/' 'p/ tj =K'

(i 4)

respectively, where pt =p/gt and tt =ct/g/.
We find the time profile of the photoacoustic wave gen-

erated by a long light pulse by convoluting a normalized
light intensity function of the form l(t) =EOS(t/e)/e
with the long-pulse response functions given by Eqs.
(12)-(14) to give the photoacoustic pressure in one, two
(for pt » 1), and three dimensions as

P(r/) = . S(i/),
26(

dS(T)/dT
j} / (2p) '/2 ~ — (i/ —T) '/2

P(r/) = ., S(r/),K d
B(2r"( dz(

(is)

(i 6)

(i7)
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respectively, where r/ = r/g/.
In two dimensions, we determine the frequency domain

velocity potential by using a Green s-function solution
to the Helmholtz equation [10] corresponding to Eq.
(1). The Green's function for an infinite medium is
itrH0' (k~p —p'~), which for a cylindrically symmetric
source reduces to Jo(kp')Ho' (kp), where Ho' is the
zeroth-order Hankel function of the first kind, Jo is a
Bessel function, and k is the wave vector. In the limit of
low frequencies, Jo(kp') —= 1, which gives the low-

frequency photoacoustic pressure and its Fourier trans-
form as
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FIG. 1. Photoacoustic wave forms from short laser pulses.
Left column: photoacoustic pressure P in arbitrary units vs di-
mensionless time i for (a) a fluid layer, (b) a cylinder, and (c)
a sphere. The equations in the text were evaluated with «/2 = I,
er/2p

' = I, and «/2r" = I in (a), (b), and (c), respectively.
Right column: experimental wave forms obtained by irradiating
(a) a 3-mm-thick layer, (b) a 150-pm-radius cylinder, and (c)
a 500-pm-radius droplet. The time and voltage scales on the
oscilloscope are (a) I psec/div and 20 mV/div, (b) 200 nsec/div
and 20 mV/div, (c) 500 nsec/div and 50 mV/div. The laser
fluences were 15, 60, and 20 J/m, and the absorbances of the
bodies were 0.4, 0.5, and 1.4 cm

respectively, where ee =cB/ge and rl =rl/el. According
to the definition of the fractional derivative [13,14], the
photoacoustic pressure in one, two, and three dimensions
in the case of long-pulse excitation is proportional to the
zeroth, the one-half, and the first time derivative, respec-
tively, of the intensity of the exciting optical pulse evalu-
ated at the retarded time from the origin. Further
analysis [7] shows that these properties are more general
than has been found for the simple cases of bodies with

spherical and cylindrical symmetry. Figure 2 gives plots
of Eqs. (15)-(17)where 5 is a Gaussian function of time.

Experiments with short optical pulses were done using
the frequency-doubled output of a Q-switched Nd-doped
yttrium aluminum garnet (Nd:YAlG) laser. The acous-
tic waves were detected [2] with a polyvinylidene Iluoride
film transducer whose output was displayed on an oscillo-
scope after amplification by a factor of 40. A fiuid layer
was made by confining dyed methanol between two sheets
of 13-pm, transparent polyvinylidene chloride film. The
dyed layer was then placed in a methanol-filled pho-
toacoustic cell. A Quid cylinder was formed by pumping
dyed benzaldehyde through narrow bore tubing into a
water-filled photoacoustic cell. These two fluids have
sound speeds and densities within 4% of each other and
are thus essentially identical acoustically. Since benzal-
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FIG. 2. Photoacoustic wave forms from long laser pulses.
Left column: pressure P in arbitrary units vs dimensionless re-
tarded time from the origin for bodies in (a) one dimension, (b)
two dimensions, and (c) three dimensions excited by a Gaussian

light pulse in time. Equations (15)-(17) were evaluated with

«/2el Jx= I, er/(2p) ' e =1.25, and J2x/Jnee rf = I (a),
(b), and (c), respectively. Right column: experimental wave

forms obtained by irradiating (a) a highly absorbing half space,
(b) a 100-pm-radius cylinder, and (c) a 200-pm-radius droplet
of benzaldehyde. The oscilloscope time and voltage scales for
the three traces are (a) 200 nsec/div and 100 mV/div, (b) 200
nsec/div and 50 mV/div, and (c) 200 nsec/div and 20 mV/div.

The laser fluences (estimated from the fluence for a train of
pulses) and optical absorbances were 10 J/m and gO cm for
the half space, 200 J/m and 5 cm for the cylinder, and 100
J/m and 2 cm e for the sphere.

dehyde and water are immiscible, at the tip of the tubing
a fine cylindrical stream of benzaldehyde is formed which
extends over 1 cm into the cell (before breaking up). For
the experiments with a sphere, a droplet of benzaldehyde
was suspended at the end of a fine capillary. Figure 1

shows wave forms generated by a layer, a cylinder, and a
sphere.

For the long-pulse experiments we used 1.06-pm radia-
tion pulses from the Nd:YA16 laser with the quarter-
wave plate associated with the Q switch removed. The
laser generated a train of approximately 1-ps-long pulses,
which were typically asymmetric, with slightly faster rise
times than fall times. For the experiment in one dimen-
sion, a concentrated solution of infrared-absorbing dye in

benzaldehyde was used to give an exponential deposition
of heat in space. The dyed solution was placed in contact
with H20, as was the case with the cylinder and the drop-
let. Experimental wave forms for the long-pulse experi-
ments are shown in Fig. 2.

The one-dimensional mapping given here for 6-
function light pulses explains the character of the square
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waves generated by an optically thin layer or the ex-
ponential waves generated by Beer's law absorption of ra-
diation, found in Refs. [2] and [15-17],respectively. The
two-dimensional mapping reproduces [7] the photoacous-
tic wave form for a Gaussian heat distribution in space
calculated in Refs. [4], [18], and [19] and studied experi-
mentally in Ref. [20], as well as that for an optically thin,
infinite cylinder discussed in Refs. [2] and [21]. The
three-dimensional mapping explains the origin of the N-
shaped wave found in Refs. [2], [22], and [23] for pho-
toacoustic waves generated by a droplet, and can be ex-
tended to the problem of the "bursting balloon" (which
also generates an ¹haped wave) found in texts on clas-
sical acoustics [24,25]. We also believe that the
function response given here would lead to considerable
simplification of some previous calculations in three di-
mensions [26,27] since the acoustic wave excited by arbi-
trary light pulses can be found in terms of simple convo-
lution integrals.

The theorems for long light pulses given here general-
ize the results of Refs. [15] and [17] where waves propor-
tional to the exciting radiation pulse were found in one-
dimensional calculations. The authors of Ref. [18] hinted
at the two-dimensional theorem given here when they
showed that the temporal profiles of photoacoustic waves
produced by square, circular, and Gaussian laser beams
with a long Gaussian time profile had nearly identical
wave forms. We find the wave form in Fig. 2(b) to
match closely those found in Ref. [18]. ]n addition, we
note that the amplitude dependence of the photoacoustic
pressure in two dimensions, as given by Eq. [16], is iden-
tical with that calculated in Ref. [211 using a completely
diA'erent method. We also find agreement between the
wave form predicted from the long-pulse theorem for
three dimensions and the wave forms calculated in Refs.
[23] and [28].
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