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Deconfining Transition of SU(3) Gauge Theory on Nt =4 and 6 Lattices
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We report the results of a Monte Carlo study of finite-temperature pure SU(3) gauge theory per-
formed on the parallel computer QCDPAX. The deconfining transition is studied on 12'X24X4,
24"-X36X4, 24'X6, and 36 &48&6 lattices with 480000-1112000 iterations. A clear two-phase struc-
ture is observed on spatially large (24 x 36X4 and 36'X48 &&6) lattices and the gaps of physical quanti-
ties at the transition are calculated on these lattices. The Iatent heat thus obtained on the ÃI =6
(36'X48&&6) lattice is much smaller than the one previously obtained.

PACS numbers: 1 l. 15.Ha, l 2.38.GC

Numerous works have been devoted to the study of the
finite-temperature deconfining phase transition of lattice
QCD. Recently, it has been realized that the determina-
tion of the nature of the transition requires much more
intensive numerical calculations than done previously
even in pure SU(3) gauge theory [1]. Through the stud-
ies on the N, =4 (N, is the lattice size in the temporal
direction) lattices with large spatial volume and with high
statistics, now the order of the phase transition has been
definitely determined to be first order [2-4]. It has also
turned out that the latent heat calculated on the N, =4
lattices is much smaller than previously determined [2].
The latent heat in pure gauge theory is one of the funda-
mental quantities in lattice QCD, although the real value
which can be used in the studies of the early Universe and
heavy-ion collisions should be calculated in full QCD.
Thus in this Letter we study the deconfining transition in

pure SU(3) theory, in particular, the latent heat on the
N, =6 lattice, by a precise calculation. Of course, A, =6
is too small to obtain the continuum limit of the latent
heat. Nonetheless we hope that this is a step towards the
continuum limit.

The calculation has been done on the massively parallel
computer QCDPAX [5], a MIMD (multiple instruction,
multiple data) machine constructed at the University of
Tsukuba as the fifth generation of PAX (parallel array
experiment) [6] computers. QCDPAX is a 14 GIIops
machine with 480 nodes.

We first study the N, =4 system (12 x24X4 and 24
x36X4 lattices) with statistics which are largely im-
proved compared with the previous works. As is shown
below, we obtain results which are completely consistent
with the previous results and furthermore we obtain new
results such as a clear four-peak structure of the Poly-
akov loop at the deconfining temperature. Therefore we
are convinced that the hardware and software of
QCDPAX are working perfectly. Then we further study
N, =6 lattices with large spatial volume (24 X6 and
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FIG. 1. Average plaquette histories on the 36'-x48&6 lattice
at P =5.8936.
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36-&48&&6 lattices) in high statistics. A preliminary re-
sult of a part of this work has been reported in Ref. [7].

Using the standard one-plaquette action, the gauge
configurations are updated with a three SU(2) subgroup
eight-hit pseudo-heatbath algorithm. The acceptance
rate is about 95%. At every iteration we measure spatial
and temporal plaquettes as well as the spatially averaged
Polyakov loop O. The one-link update time for full size
QCDPAX with 480 nodes is 1.44 psec.

For the N& =4 case, we perform 712000 Monte Carlo
iterations on the 24 X36&4 lattice at p=5.6925 and
910000 iterations on the 12 X24&&4 lattice at p=5.6915.
As is shown below, these p values exactly agree with the
deconfining transition points p, . within statistical errors.
These statistics are much improved over the previous
works (see Ref. [I]). For the N, =6 case, the Columbia
group [2] reported the results of 10000-100000 itera-
tions at several values of p on (16 -24 ) X6 lattices.
Here, we perform 480000 iterations on the 24 x6 lattice
at p=5.89 and 1112000 iterations on the 36 &&48X6 lat-
tice at P=5.8936. Note that the spatial lattice size is
greatly enlarged and that the statistics are one order im-
proved compared with the previous work for the case of
the 36 x48x6 lattice.

We can see many flip-flops in the histories of the aver-
age plaquette on all the lattices, as is shown in Fig. 1 for
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the case of the 36 &48&6 lattice. The histogram of the
absolute value of the Polyakov loop on the spatially large
lattices (24 &&36X4 and 36 X48X6) shows a clear
double-peak structure and furthermore the histogram of
the Polyakov loop on the complex plane shows a four-
peak structure (see Fig. 2 and Ref. [7]). These are con-
sistent with the first-order phase transition associated
with the spontaneous breakdown of the Z(3) symmetry.

The many flip-flops seen in the histories allow us to ap-
ply the spectral density method [8] to see the P depen-
dence of observables near the simulation point. The main
purpose of this analysis is to get a precise location and the
properties of the phase transition. We study the suscepti-
bility g of the real part of the Z(3)-rotated Polyakov loop
O„t and that of the averaged plaquette P:

where P=Q„„t,P. Here and in the following, we denote
the spatial volume of the lattice as V. The peak position
of the susceptibility is identified with a finite-volume esti-
mate of the transition point P, .

Errors are estimated using the jackknife method [9].
The bin-size dependence of the estimated errors is studied
to remove the autocorrelation effects. The large statistics
of our data allows us to vary the bin size widely. From
this study we find that large numbers are required for the
bin size to get reliable values of errors which are stable

1 60OO

for an increase of the bin size: We use the bin size of
35500 (50000) for observables averaged over both the
confining phase and deconfining phase on the 24 & 36 &4
(36 X48X6) lattice. As expected, these bin sizes are
comparable with the average persistent time of the phases
seen in the histories. For quantities in each phase, the re-
quired bin sizes are smaller, typically 3000-5000.

The results for g(fl„,i) are shown in Fig. 3. Note that
our P's are located exactly at the transition point except
for the case of the 24 &6 lattice. Figure 4 summarizes
our results (N, =4 and 6) for the peak height g „. „and
the peak position P,. of the susceptibility together with the
results of the Kyoto-Tsukuba collaboration for N, =4 [4].

The finite-size scaling predicts a linear scaling law

g .„„(V)—V~ and P, (N„V) . P, (N—„~)—V with p=o.=l for first-order transitions, in contrast with non-
trivial critical exponents of second-order transitions. A
power-law fit using lattices of N, =4 and V/N, & 50 (in-
cluding the Kyoto-Tsukuba data) leads to

=0 1070(75)(V/N ) '
resulting in a critical exponent p very close to unity. Al-
lowing an extra constant term in the fit leads to
p=1.05(27). Thus the results are completely consistent
with the previous conclusion [1] that the deconfining
transition is first order.

We estimate the infinite-volume limit of P, , assuming
tT= l. Using the lattices V/N, ) 50, we find

P, . (4, V) =5.69247(23) —0.053(26)N, /V
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FIG. 2. Polyakov loop histograms on the 36 X48&6 lattice
at P =5.8936: (a) ! ti! and (b) ti on the complex plane.

FIG. 3. Susceptibility of the Z(3)-rotated Polyakov loop:
g(O,oi)/V. (a) JV, =4; (b) IV, =6.
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3.324(29)

703.478 (74)
707.539(42)

2.773(55)
4.062(85)

36 x48x6
5.8936

0.360(35)
2. 195(37)

3776.892(43)
3779.287 (46)

1.835(51)
2.395 (63)

TABLE 1. (e —3p)/T' and (e+p)/T with one-loop pertur-
bative coe%cients assumed. Phase separation is performed as

explained in the text.
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Here p(g) is the renormalization-group beta function and

c(P) is a response function of the gauge coupling con-
stant with respect to the asymmetry deformation of the
lattice. In the perturbation theory they are given by

—36P(g)/g =99/ir +O(P '),
and
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and

P, (6, V) =5.89405(51) —0.072(77)N( /V.

The resulting p, . (4, ~) is consistent with the estimate of
the Kyoto-Tsukuba group: 5.69226(41). Our P,.(6,~)
is significantly larger than a previous estimate [10] of
5.877(6) extrapolated from small lattices: V=7 —11

Comparing the N, dependence of our p, . (N„~) with

the prediction of a two-loop perturbation theory for the
shift of p, , Ap2 J p we find [p,. (6,~) —p, (4, )l/Ap2 (~i,
=0.561(2). This asymptotic-scaling violation was noted
in previous works [10],and the magnitude of the violation
is consistent with previous estimates by the Monte Carlo
renormalization-group (MCRG) method at these p's
[11].

Now let us study gaps of thermodynamic quantities at
the phase transition. We expect a finite gap (latent heat)
for the energy density e but no gap for the pressure p.
Conventionally, combinations e —3p and e+p are stud-
ied, because they are proportional to a sum and a dif-
ference of the spacelike and timelike plaquette averages,
P, and P„respectively [12]:.

e —3p = —36[P(g)/g ](P,+P, ),
e+p =4Pc(P)(P, —P, ) . ,

FIG. 4. (a) Peak height and (b) peak position of g(O„„&) as a
function of relative spatial volume V//V, '. Open circles are the
data on the 1V& =4 lattices by the Kyoto-Tsukuba collaboration.
Solid circles and squares are our results on the A'& =4 and 6 lat-
tices, respectively.

c(P) =1 —1.00062P '+O(P ) .

We calculate the gaps on the 24 &36X4 and 36
&&48X6 lattices: On these lattices, our p's locate exactly
at the transition points, as mentioned earlier, and two-
phase structure is very clear both in the history and in the
histogram, as Figs. 1 and 2 show. In order to obtain the
energy gap at the transition, we have to separate the
Monte Carlo runs at the transition into two phases. We
find that, as mentioned in Ref. [4], the separation of a
run into two phases by an inspection of the time history
of the Polyakov loop is stable, if we disregard a large
enough number of iterations around the Hip-flops: We
disregard 2000 (3000) iterations around the flip-IIops for
the 24 X36X4 (36 X48X6) lattice.

Our results for (e —3p)/T" and (e+p)/T with per-
turbative coe%cients assumed are summarized in Table I
[13]. These results can be compared with the previous
ones: On the 24 &&4 lattice at the same p, h(e —3p)/
T =4.200(95) (Kyoto-Tsukuba [4]), 3.78(20) (Colum-
bia [2]); and h(e+p)/T =2.927(97) (Kyoto-Tsukuba),
2.54(12) (Columbia). On the 28 X4 lattice at p=5.692,
A(e —3p)/T =4. I 1 (12) and A(e+p)/T =2.826(37)
(Kyoto-Tsukuba). Note that our results for N, =4 are
completely consistent with those of the Kyoto-Tsukuba
group: The values of the physical quantities in both the
phases themselves agree with each other.

For N, =6, the Columbia group estimated A(e+p)/
T =2.48(24) on the 24 &&6 lattice. We find a much
smaller value, 1.835(51), for this gap (see Table I). We
understand the origin of the discrepancy as follows: (1)
The Columbia group measured (c+p)/T in the decon-
fining phases at P=5.9 which is slightly above our esti-
mate of P, . =5.8938(3) and obtained [14] 2.60 which is

larger than our value 2. 195 at P=5.8936 by 0.405. This
difference can be attributed to the sharp drop in
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(e+p)/T above the transition point observed by the
Columbia group. (2) The value of (e+p)/T in the
confining phase assumed by the Columbia group [14] is

0.12 at P =5.875 which is smaller than our value 0.36 by
0.24. Our data indicate that the increase of (e+p)/T in

the confined phase near P,. in the data of the Columbia
group, which they took as due to mixing of the phases, is

partly a real eAect. Thus these two facts in total lead to
the difference of 0.64S ( =2.48 —1.835) for the gap.

These results raise two problems: First, gaps for N, =6
are smaller than those for N, =4 by a factor 1.S for
h(e+p) and 1.7 for A(e —3p), indicating naively a scal-
ing violation at these values of P. Second, both N, =4
and N, =6 results show discrepancies between h, (e —3p)
and h(e+p), which again naively suggests a finite pres-
sure gap at the transition.

Since the violation of the asymptotic scaling at these
P's is already well established [11], the use of perturba-
tive coe%cients for e —3p and e+p is not validated and
we have to estimate nonperturbative corrections to these
quantities.

Because the coeScient of e —3p is given by the beta
function, we can apply to it the nonperturbative beta
function obtained by studies of MCRG and the decon-
fining phase transition. The correction factor to the one-
loop perturbative beta function which the MCRG studies
[11] give is 06~005 at P=5.7 and 075+ 007 at
P=5.9. Large error bars are caused by the dispersive
MCRG results. (A similar approach was also proposed
by Engels et al. [I S].) These corrections make A(e
—3p)/T =2.44~0.24 for N, =4 and 1.43~0.14 for

N& =6. Therefore even after we include the correction
factors, the discrepancy between the two still remains.
Thus A(e —3p)/T shows a substantial scaling violation
at these P's.

Now the differences between the corrected A(e —3p)/
T and the uncorrected /s. (e+p)/T are small for both
the N, =4 and N, =6 lattices. Since we expect that hp is

zero, this suggests that nonperturbative correction to the
coe%cient of e+p is small. The confirmation of this re-
quires a numerical study of anisotropic lattices [16] with
small anisotropy.

We have performed precise measurements of the de-
confining transition in pure gauge theory on the dedicated
machine QCDPAX. After confirming the first-order na-
ture of the transition, we have found that the latent heat
on the N, =6 lattice is much smaller than that on the
N, =4 lattice and &

—4 of the Stefan-Boltzmann value
I 5/8tr . Whether this small value of the latent heat con-
tinues to the continuum limit is an important question left
for further investigations.
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