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Fractional Superstrings with Space-Time Critical Dimensions Four and Six
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We propose possible new string theories based on local world-sheet symmetries corresponding to ex-
tensions of the Virasoro algebra by fractional-spin currents. They have critical central charges
c =6(K+8)/(K+2) and Minkowski space-time dimensions D =2+16/K for K ~ 2 an integer. We
present evidence for their existence by constructing modular-invariant partition functions and the mass-
less particle spectra. The dimension 4 and 6 strings have space-time supersymmetry.

PACS numbers: 11.l 7.+y

String theories [1] are primarily characterized by the
local symmetries of a two-dimensional field theory on the
string world sheet. The local symmetries of the bosonic
string are reparametrization and Weyl invariance which
lead to a critical string propagating in 26 Hat space-time
dimensions. The superstring enlarges the world-sheet

gauge invariance to include a local N =1 supersymmetry,
and reduces the critical space-time dimension to 10. It is

natural to try to construct string theories with smaller
critical space-time dimensions by changing the world-
sheet symmetry. Unfortunately, enlarging to a local
N =2 supersymmetry produces a critical string in just
two-dimensional M inkowski space. It is well known,
however, that fractional-spin fields can exist in two-
dimensional field theory. One can imagine new local
symmetries on the world sheet which involve fractional-
spin currents and which lead to string propagation in

space times with dimensions less than 10. In this Letter
we will present evidence for the existence of such new

string theories, and, in particular, will show that strings
with spin- & and -

& currents on the world sheet can have

interesting phenomenologies in 6 and 4 space-time dimen-
sions, respectively.

The algebra of constraints resulting from gauge fixing
the two-dimensional local symmetry must contain the
Virasoro algebra. In this Letter we consider strings with
the Virasoro algebra extended by chiral currents with

fractional spins (equivalently, conformal dimensions)
given by 6=1+2/(K+2) for K~ 2 an integer. These
fractional-spin currents transform bosonic fields to spin-
2/(K+2) fields. We refer to these algebras as fractional
superconformal algebras and the string theories based on

these algebras as fractional superstrings. The K =2 case
is the usual superstring with the super Virasoro algebra
as its constraint algebra. The construction of fractional
superstrings generalizes that of the superstring.

In fact, the fractional superconformal algebras were
proposed a few years ago [2,3]; we can construct them as
follows. Consider the chiral SU(2)tc Wess-Zumino-
Witten (WZW) theory. Denote the WZW primary fields
of spin j and J3 quantum number m by N~„, for
0~ j~ K/2, and the nth mode of the Kac-Moody cur-
rents by J,',". Define the current [2] G (z) =P„,J'—"~
&&@,'„(z). The WZW theory can be expressed as the ten-

where e, the lowest dimension member of fo, is the first

energy operator of the Zz-parafermion theory, and has
dimension 2/(K+2). The t) field (present for K~ 3) is a
parafermion descendant of t. , but Virasoro primary with
dimension h, .

The chiral algebra generated by the energy-momentum
tensor and Gq (appropriately modified with background
charge for p) was first proposed as the underlying sym-
metry of the SU(2)t;SU(2)t/SU(2)q+t coset models
[2,3]. Much evidence has accumulated showing the im-

portance of these algebras in organizing the operator con-
tent of conformal field theories [5-7]. We should em-
phasize, however, that except in some special cases [5,8]
the exact form of this fractional supersymmetry algebra
is not known.

Next, we replace the scalar field p with a decom-
pactified one called X. The SU(2) WZW symmetry is
now lost. We interpret the X field as the string coordi-
nate and tensor together D copies to allow a D-dimen-
sional space-time interpretation. Adding space-time in-

dices, we write the (world-sheet) fractional supersym-
metry current for a D-dimensional fractional superstring
as

G"(z) =e"r)X„(z)+:e"e„(z):, (2)

where the index p =0, 1,2, . . . , D —
1 is contracted with a

Minkowski metric. The normal ordering symbol in the
second term is meant as an instruction to pick out the g
field which appears as the dimension h, operator in the ee
operator product expansion [see also Eq. (4) below].
Thus, the conformal field theory corresponding to a single
space-time dimension is a c =1 free boson plus a
c =2(K —1)/(K+2) Zq--parafermion theory and has a
conformal anomaly co=3K/(K+2). It is easy to show
that the D-fold tensor product algebra generated by G
closes on itself if the single component algebra Gq. does
[9].

sor product of a free scalar field p, compactified on a cir-
cle of radius I/JK, and the Ztc-parafermion theory [4].
The parafermion fields can be organized into sets f,'„ac-
cording to SU(2)z. quantum numbers. In terms of these
fields Gq can be expressed as

G (z) =e(z)r)y(z)+ t)(z),
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For K =2, the ZK-parafermion theory is just the Ising
model and the energy operator t is simply the free
Majorana-Weyl field; the second term in Eq. (2) vanishes
in this case. This describes the usual superstring.

We now wish to show that in addition to the K=2
superstring, theories with other K values can have sensi-
ble interpretations as string theories in Hat space-time.
To this end, we follow a simple argument to determine
the space-time critical dimension of the fractional super-
string as a necessary condition for a desirable string phe-
nomenology. Along the way we show that the fractional
supercurrent imposes the correct physical state condition
on the massless particles in the spectrum.

The physical state conditions arising from the gauge-
fixing constraints on the world sheet are G„~phys)
=L ~nphys) =0 for n &0 and Lp~phys) =v~phys), where
the L„are the generators of the Virasoro algebra and v is
the intercept. To determine i we demand that the open
string theory have a massless vector particle (a graviton
in the closed string theory). For example, in the bosonic
string, the lowest-mass vector particle is ~(/I) =a"—

1 ~p&,

where a„" are the modes of the L" coordinate fields and

~p) is the ground state with momentum p'. To be a phys-
ical state, it must satisfy 0 =(Lp —v)

~ y) =(1 —M
—v)~y). Therefore ~y) is massless only for v=1. Now

apply this argument to the fractional superstring. For
K ~ 2 the lowest-mass vector particle is

I y& =g, ~"-2/(K+2) IP &, (3)

where the e„are the X-boson modes and the c„are
coefficients that can be calculated from the ZK-para-
fermion theory. Since the second term annihilates ~y),
we find for the physical state condition O=G2/(~+2) ~y)
=p g~p). Because

~ y) is massless, the longitudinal state
with (, n pep" is null. Thus we find the physical state con-
dition and the D —2 propagating degrees of freedom ap-
propriate for a massless vector particle.

To be consistent with the massless vector particle, we
require that, for the whole spectrum, effectively only
D —2 transverse dimensions worth of polarization states
actually propagate. This is a signal of the enlarged gauge

where the moding of the energy operator e" acting on the
ground state follows from its dimension and g„ is the po-
larization tensor. The physical state condition 0=(Lp
—v) ~y) = [2/(K+2) —M —v]

~ y) implies that
~ y) is

massless when v =2/(K+ 2).
The only nontrivial physical state condition on ~y) is

O=G2/~. +2) ~y). This can be computed using the mode
expansion of the fractional supersymmetry current fol-
lowing from Eq. (2),

G2/(K+2) Z &Fl(K+2)+n(a —nn+Cn& np, ) ~
—(4, )

c,.„i=Dcp =6(K+8)/(K+ 2) . (8)

For K =2, 4, 8, 16, and ~, we find the new integer criti-
cal dimensions D =10, 6, 4, 3, and 2, respectively [11].
Curiously, these are precisely the dimensions which allow
minimal super Yang-Mills theories. Note that for K=2
we recover the superstring result D =10.

We will now construct modular-invariant partition
functions for the K=4 and 8 closed fractional super-
strings. As above, we impose the conditions that only
D —2 dimensions worth of states propagate, and that
there is a graviton in the closed string spectrum. In addi-
tion, we require that no tachyonic states appear in the
spectrum.

Each of the D —2 transverse dimensions contribute a
ZK-parafermion plus L"-boson worth of states to the par-
tition function. Specifically, each boson contributes a
factor g(q) ', the reciprocal of the Dedekind eta func-
tion, and each set of parafermion fields f~„c otrnibutes a
factor g(q)cz/„(q) to the partition function, where the
cP, are string functions [12]. The string functions obey
the identities cK —2„, =c2„,=c —2„„and have known power
series expansions in q starting with cP, (q) =q" '"' (1
+ ) where, for ~m~ (j,

(. ) 8j(j+1)—K
8(K+ 2)

m

K
(9)

The partition function must also be invariant under
the modular transformations T: r T: + 1 and 5:—1/r, where q =exp(2inr). The T modular trans-
formation properties of the string functions follow from
Eq. (9), while the S transformation is given by [12]

invariance of critical strings.
The character g(q) which includes the string ground

state counts the number of propagating degrees of free-
dom N at each mass level M by the coefficients of terms
in a power series expansion in q:

g(q) =QNq~ =q '(1+ ) . (s)
The second equality follows from the fact that I p= —M + counts the mass level of a state, where the
dots stand for Fock space number operators. Thus the
lowest-mass physical state obeys M = —v. On the other
hand, conformal invariance requires that [10]

g(q) =q """(1+ ), (6)
where c,.|T is the effective conformal anomaly of the prop-
agating degrees of freedom. From the requirement that
only the transverse dimensions couple in a critical string,
we have c„(r=(D—2)cp. Comparison of Eqs. (5) and (6)
shows that D =2+ 24v/cp.

Since cp=3K/(K+2) for the fractional superstring,
and we found v =2/(K+2) above, we have for K) 2

D =2+ 16/K (7)
and

K K

c 2J ( —]/r ) = [—)'r K(K+ 2)]
J=O M= 1

—K K+2 cM(T) .
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Let us briefly review the construction of the partition
function of the K =2 (superstring) theory with critical di-
mension D =10. The partition function will be a sum of
terms each with eight Z2-parafermion (free-fermion)
string function factors for each of the eight transverse di-
mensions. A tachyon-free modular-invariant partition
function is found [13] to be Z~2 2&(q) = IA21, where [14]

A2 = 8(co)'co —8(c~ )"+56(cg) (co )

+ 56(co ) '(co ) '+ 8cg (co ) '. (10)

From Eq. (9) we see that only the first two terms contrib-
ute to the massless spectrum, and the requirement that
the left-moving spectrum contain a massless vector parti-
cle (or, equivalently, that Zt22~ contain the graviton)
fixes the normalization of A2. The translation to the
Jacobi 0-function notation is q (cg+co) =03 and q (cg
—eo) =04 for the Neveu-Schwarz sector and 2g (e~')
= 02 for the Ramond sector. The massless sector in

Ztz 2& contains an N=2 supergravity multiplet and A2
vanishes, consistent with space-time supersymmetry. We
will find that all of these features are present in the K =4
and K =8 partition functions.

The K =4 fractional superstring has critical dimension
D =6, conformal anomaly cp=2 per space-time dimen-
sion, and a fractional supercurrent G of dimension
We find one tachyon-free modular-invariant partition
function

with

Z~4, 4&(q) = IA41'+121841',

A4=4(coo+Co) c —4(e ) +32(cz ) c —4(c )

84= 4(c ) (c ) +8(c +co )co (e )

+4(co+co) cqe2 .

Under the 5 modular transformation the partition func-
tion blocks obey S(A4) = —,

' A4+384 and S(84) = —,
'

A4
——, 84. Equation (9) implies that A4 —q (1+ ) and

84 —q' (1+ ). Thus we see that there are no ta-
chyons in this theory, and that the only contributions to
the massless states are from the terms 4(co) co —4(cq )
in A4. The first term has the interpretation as the mass-
less vector particle since it is created from the (co) vac-
uum by a parafermion field with j=1 and m =0, giving
rise to one cp factor. These are precisely the quantum
numbers of the e" energy operators, so we can identify it
with the massless vector state of Eq. (3). The number of
degrees of freedom of a massless vector particle in six di-
mensions is four, fixing the normalization of the partition
function. The second term, appearing with a minus sign,
must be interpreted as a space-time fermion. It is com-
posed of j =1 spin fields in the parafermion theory, com-
monly denoted o2 E f~'. The normalization of this term
suggests that it is a space-time spin- 2 Weyl field.

Entirely similar observations hold for the K=8 frac-

tional superstring. This string has critical dimension
D =4, conformal anomaly cp= ~ per space-time dimen-]2

sion, and a fractional supercurrent G of dimension

For the K=8 closed fractional superstring, we find one
tachyon-free modular-invariant partition function

Z~, ,,&(q) =
I A, I

'+18,1'+ 2 I C, I
',

where

(12)

As =2(cg+ eo ) (co + co ) 2(c4 ) + 8C4c4 2(co )

Bs =4(CO +Co )C4 +4(CO +Co )C4 4COC4,

Cs =4(C2 +Cp ) (C2 +C2 ) 4(C2 )

The partition function blocks mix under the S modular
transformation as S(A s) = —, A s+ —,

' Bs+Cs, S(Bs)
= —. As+ —, Bs —Cs, and S(Cs) = —, As ——. Bs. Equation
(9) implies that As —q (1+ ), Bs—q'~ (1+ ),
and Cs —q (1+ ). The massless states only con-
tribute to the terms 2eoco —2(c4) in As. Again, the q
term in 2cpcp can be identified with the massless vector
state of Eq. (3). The term 2(c4) must be interpreted as
space-time fermions.

The massless fermion states of the fractional super-
strings are described in a manner closely analogous to
those of the K =2 superstring. They appear in the above
partition functions in terms of the form (c~/q) . The
spin field o~yq is the lowest dimension parafermion field

in c~~2. We write the fermion ground state as

(13)

in analogy to the Ramond ground state of the superstring.
The energy operator e" can have integer moding when

acting on ogg2. From the parafermion theory [4], one
can show that Ep6p =1 when acting on a&~2. With ap-
propriate Klein factors ep satisfies the CliAord algebra,
[e'o, eo] = —2g"', when acting on Ip), where g"' is the
Minkowski metric. Thus the t.'p can be identified with

Dirac gamma matrices and Ip) has the degeneracy and

Lorentz properties of a spinor. Ip) is massless if we

choose the intercept zero for this sector: Lolg) =p IP)
=0. The only nontrivial physical state condition on Ip) is

given by the G zero mode Go =P„(a"—„+e„'e"„)e„„.
We find for the physical state condition 0=GO IP)
=p col&) =p'Ip), giving the massless Dirac equation.
With a Weyl and/or Majorana projection, the number of
physical spinor degrees of freedom is 8, 4, and 2 in 10, 6,
and 4 dimensions, respectively, in agreement with the

Zt~ g~ partition functions.
Note that the massless spectrum in the closed string

partition function Zt~ ~& has the correct counting of
states for a D-dimensional N =2 supergravity theory.
The existence of massless spin- & states suggests that if
the theory is to be unitary, it must have space-time super-
symmetry. This implies that Ztg ~~ vanishes, which in
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turn implies that Ag =By =C~ =0. We have checked,
using known expressions for the string functions [12],
that Az, Bz, and Cz are each identically zero out to the
first 10 terms in their expansions in q. It turns out that
these identities can indeed be proven [15].

In summary, there exist modular-invariant combina-
tions of the string functions which remove tachyon contri-
butions by projections similar to the Gliozzi-Scherk-Olive
projection [13]. The resulting partition functions have

only positive and negative integer coefFicients, permitting
a space-time particle interpretation which is supported by
the explicit construction of the massless degrees of free-
dom. Finally, the partition functions obey an exact can-
cellation of boson and fermion degrees of freedom at each
mass level, indicative of space-time supersymmetry.

The arguments presented in this Letter also suggest
other types of new string theories: (1) So far we have
built only closed string theories in which the left- and
right-moving world-sheet symmetries are matched. How-
ever, one can also build new types of heterotic strings in

which the left- and right-moving world-sheet symmetries
are diA'erent [16]. (2) Another possible new string theory
has K =16 and critical dimension D 3 which could de-
scribe a theory of space-time anyons. A tachyon-free, su-

persymmetric K =16 partition function will be presented
elsewhere [15]. (3) A final possibility is the lt =~ string
with D =2 where G has unit dimension. It has partition
function Zt ) =const. We believe such a string can be
constructed by gauging appropriate WZW currents on
the string world sheet.

There are clearly many issues that must be addressed
in order to show that the fractional superstrings proposed
here are consistent theories. Foremost among these are
the questions of unitarity, scattering amplitudes, the
ghost system, and the local world-sheet symmetry under-

lying the fractional supersymmetry constraint algebra.
The techniques that answer these questions for the K =2
superstring depend largely on the fact that the super
Virasoro algebra is a local algebra on the world sheet.
The K =4 fractional supersymmetry chiral algebra is

nonlocal; however, there exists a splitting of its current
that satisfies an algebra with Abelian (parafermionic)
braiding relations, allowing a description of the algebra in

terms of generalized commutators of modes [5]. We be-
lieve that the K =8 and 16 algebras are both nonlocal and
non-Abel[an [8], and will require new techniques to ap-

proach them. The fractional superstrings proposed here
thus present conceptual and calculational challenges; they
also promise rich and novel world-sheet structures.
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