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Exact string solutions corresponding to two-dimensional electrically charged black holes are construct-

ed.

PACS numbers: 11.17.+y, 97.60.Lf

Recently, exact solutions to string theory in the form of
two-dimensional black holes were found [1-4]. It would
be interesting to generalize this result to charged black
holes. Previously [5], solutions to the low-order effective
action in the form of four-dimensional charged black
holes were shown to exist. In this paper, we construct a
two-dimensional charged black hole as an exact confor-
mal field theory. The original two-dimensional black hole
was constructed by gauging a U(l) subgroup of an
SL(2,R) Wess-Zumino-Witten (WZW) model. The
electrically charged black hole discussed here is obtained
by adding a boson to the model and coupling it to the
world-sheet gauge field. After integrating out the world-
sheet gauge field, we obtain a solution for the spacetime
metric, dilaton, and electromagnetic field which describes
a charged black hole. The charge of the black hole is

0 =2(e/k)expa ,

where e is the coupling between the world-sheet gauge
field and the free-boson field, k is the level of the WZW
model, and a is an undetermined constant which appears
in the dilation background. The mass of the black hole is
the same as that of the uncharged black hole:

M =~/2/k expa .

Unlike the Reissner-Nordstrom solution, the singularity
is hidden behind a horizon for arbitrary large values of
the electric charge. It is also possible to construct other
conformal field theories which describe solutions with
naked singularities as well as solutions with no singulari-
ties at all.

To obtain closed-string theories which have gauge
fields in their massless spectrum, one introduces free bo-
sons or, equivalently, free fermions on the world sheet [6].
For example, a bosonic string model with gauge fields can
be obtained by starting from a system of bosons, X*,
describing the embedding of the world sheet in spacetime,
together with free bosons, X!, which are compactified so
as to realize the Kac-Moody current of the gauge group.
Normally, in the heterotic string one considers chiral bo-
sons, but here we will include both left and right movers.
This will then yield a separate gauge symmetry for both
the left and right currents. Such a string model in a
gravitational, gauge field, and dilation background
(G, A}, AL,0) is described by a nonlinear sigma model
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on the world sheet with the following action:
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Here, we have assumed that the gauge background takes
values only in the Cartan subalgebra of the gauge group.

In order to obtain a conformal field theory which de-
scribes a charged black hole, we start from an SL(2,R)
WZW model with a free compact boson:

- 1 2 Y
S =Swzw(@)+5- [a*xoxax.

By introducing a world-sheet gauge field, we will induce a
spacetime U(1)xU(1) gauge background. As in [1] we
gauge the axial U(1) symmetry,

0 1

-10

in the SL(2,R) WZW action. We also wish to couple the
gauge field to the compact boson. The free-boson system
has chiral U(1) currents X and 9.X, which are essential
to the gauge symmetry of the string theory. There are
two ways to couple the gauge fields to these currents.
First, we can gauge the U(1) translation symmetry gen-
erated by these currents:

1
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Since the left and right U(1) currents satisfy the U(1)
Kac-Moody algebra independently, we can also couple
the gauge fields to the U(1) currents in the following
way:

L a2 0x X +2iea. 9X —2iea, 5x) . @
2r

This action is invariant under the world-sheet gauge
transformation [7]
X— X, A,— A, +0,¢.

The first scheme, (3), leads to a naked singularity for
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e?/2k > 1 and a black hole with an imaginary gauge field for e%/2k < 1. The second scheme (4), as we now show, leads
to a black hole with a real gauge field for all values of e.
Using (4) we have the following two-dimensional action:
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Since dX and 8.X satisfy the U(1) Kac-Moody algebra, the gauge action above is exactly solvable as in the usual gauged
WZW models [8]. Since the compact boson has central charge c =1 and the gauging reduces ¢ by |, the central charge
of this conformal field theory is just that of the WZW model:

c=3k/(k—2).

a_gg_'—Llf—é_X g

We now show that this gauged action describes a string theory in a charged black hole background. Going to unitary

gauge as in [1],

g =coshr +sinhr sin® —cosO

cosf sinf ]

and integrating out the gauge fields, we obtain the following nonlinear-sigma-model action:

—k—fd 2x(9r 9r +tanh?r 9690) — i—efd 2y (tanh?r 909X +tanh?r §99.X)
n 2r

1 (a2 e 1 sx+ - [d2xR@
+2”fd x11+2k Coshzr]axax+ 8n'fd xR%¢, (6)

where ¢ =Incosh?r+const. Comparing with Eq. (1), it is
easy to see that this two-dimensional action describes a
two-dimensional string theory in a nontrivial gravitation-
al, gauge field, and dilaton background. There is also a
scalar field associated with the vertex operator:

X X o' PP @)

The dilaton field arises from the integration measure and
can be checked to one loop in sigma-model perturbation
theory. It should be noted that the procedure described
above is also applicable when we use fermions instead of
bosons to incorporate the gauge fields or even when we
have chiral fermions as would occur in the heterotic
string. We note that 4,=A, in the case at hand. We
can generalize our construction to the case A4,=A, by
gauging the left and right U(1) independently in the
WZW sector. For example, we can gauge only the sym-
metry generated by 9.X in the boson system together with
a suitable modification of (2), which balances the left and
right anomalies. In this case we would obtain a string
theory with only an A, background and no extra scalar
background. This results in either a naked singularity or
a black hole with an imaginary gauge field.

To obtain a Lorentzian signature black hole we could
gauge a noncompact U(1) subgroup. Here, we merely
analytically continue to Lorentzian signature by 6— it.

This yields the spacetime metric,

ds?=2kdr?*—2ktanh?rdt?, (8a)
dilaton,

¢=Incosh’r+a, (8b)
and U(1) gauge field,

A, =etanh’rd,t, (8¢)

where a is a constant. In addition, we have a scalar back-
ground associated with the compact boson. This solution
describes a charged black hole with a metric and dilaton
which are identical to that of the uncharged black hole
[1]. It should be observed that if we think of the solution
as a three-dimensional metric, then shifting ¢ by a multi-
ple of X diagonalizes the metric and yields the product of
the uncharged black hole and a circle. Hence, one might
think that the charged black hole is equivalent to the un-
charged black hole. However, this is not the case. Since
X is compact, the new coordinates which one obtains by
such a coordinate transformation are not good global
coordinates on the cylinder. Moreover, it can be shown
that the two underlying conformal field theories are in-
equivalent.

We now calculate the mass and charge of the black
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hole. The mass of the black hole can be obtained by the
Arnowitt-Deser-Misner procedure. The low-energy ef-
fective action for the background fields is quadratic in the
electromagnetic field strength and in gradients of the sca-
lar field. Since both of these vanish asymptotically, the
gauge field and the scalar field will not contribute to the
mass. Thus, the mass is the same as that of the un-
charged black hole [1]

M =-/2/k expa .

We can also find the electric charge of the black hole.
The equation of motion for the gauge field can be ob-
tained by dimensionally reducing to two dimensions the
low-energy three-dimensional effective action. Far from
the singularity, the equation of motion takes the form

v, (e?F*) =0.
The electric charge is then given by
Q=Fl=w, )

where 1:"=e¢eva”V. In four dimensions, F would become
a two-form, and the charge would be the integral of F
over a two-sphere. In two dimensions since F is a scalar,
we merely evaluate it at o. One should note that the
equation of motion insures that Q is independent of r.
Evaluating Eq. (9), we obtain

Q =2(e/k)expa .

We also note that one should include in the solution
quantum corrections coming from the determinant which
arise in the Gaussian integration over the gauge field.
Asymptotically, the sole effect of this is to replace k by
k —2. It should be noted that unlike the uncharged black
hole, there will now be an infinite tower of propagating
massive states. In addition, there will be an instability
due to the tachyon. As in the case of the uncharged
black hole, we expect that there exists a superconformal
version of the charged black hole. In this case, there
would be no tachyon, and the theory would be stable. Fi-
nally, we should point out that by constructions similar to
that described in this paper it is also possible to obtain
black string solutions [9].
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