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Thomas Precession, Spin-Orbit Interaction, and Berry's Phase
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The spin-orbit interaction is shown to arise as a Berry phase term in the adiabatic eAective Hamiltoni-
an for the orbital motion of a Dirac electron. This approach makes explicit the intimate connection of
the spin-orbit interaction and Thomas precession.
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The spin-orbit (SO) interaction is of basic importance
in atomic and solid-state physics; it is a relativistic effect
which arises because in the rest frame of the electron the
moving nucleus generates a magnetic field which couples
to the electron's spin magnetic moment. It is well known
that the correct magnitude of this interaction is obtained
semiclassically only after taking into account the relativ-
istic kinematic effect of Thomas precession [1]. Alterna-
tively, the effect can be derived rigorously from the Dirac
equation in the nonrelativistic limit by the Foldy-
Wouthuysen (FW) transformation [2], in which ap-
proach the role of Thomas precession is not immediately
apparent. In this Letter I show that the SO interaction
can be derived by making an adiabatic approximation to
the Dirac equation for an electron moving in a smooth
external potential, in which the orbital degrees of free-
dom are treated as slowly varying with respect to the spi-
nor degrees of freedom. It is by now a familiar possibility
that the effective Hamiltonian for the slow degrees of
freedom may contain a nontrivial gauge potential (Berry
phase contribution) [3]. In this case the gauge potential
which appears is proportional to the Thomas precession
angle, and its dynamical expression is the SO interaction.

The state space of a Dirac particle is spanned by the
basis vectors Io) I a& Ip); Io& is a basis for the orbital
degrees of freedom (which can be represented in either
position or momentum space), Itt) for the spin space
which is inhabited by Pauli matrices which we denote o.,
and Ip) for another SU(2) space inhabited by Pauli ma-
trices p. In what follows we shall span the orbital space
by the momentum eigenstates Ip). In this (Dirac) repre-

sentation, Dirac's Hamiltonian has the form

HF =p~ G'' p+ @3m, (2)

where p now appears as a parameter (analogous to nu-
clear configuration in the adiabatic treatment of molecu-
lar problems).

For p =0, we readily obtain Ia,p;p =0)—:Ia) Ip),
where o3Ia) =ttItt& and p3Ip) =pIp& with a,p = ~, which
satisfy

Ht;Ia, p;p=0) =pmIa, p;p=o). (3)

We obtain finite momentum eigenstates by Lorentz
boosting [4] Itt, p;p =0). Working to 0(v ) accuracy,

p =mt rl,

I tt, p;p& =N (v &A(v& I tt&
I p &

2

+ ' ~ np3 Ia&eIp&,

(4)

where N(v) denotes a normalization factor. These states

Hg =p~ a" p+ p3m+ V,
PE

where V is an operator that acts only on the orbital de-
grees of freedom. Following the usual Born-Oppen-
heimer method, we identify the orbital degrees of free-
dom as slow and look for solutions for the fast spinor de-
grees of freedom determined by the 4&4 matrix Hamil-
toll ia f1,
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satisfy

HF I a, p; p) =p m ( I + —, v ')
I a, p;p),

eigenstates of the full Hamiltonian of the type

I v& =„dpZ w. (p) lp& |8 la. +;p&. (6)

&a, +;plP +;p& =~.p
(5)

Since the solutions of Eq. (5) are independent of the
index a for a given p we obtain two levels, each twofold
degenerate, the well-known positive and negative energy
states of the Dirac particle, with an enormous level spac-
ing (of the order of an electron's mass), much greater
than the typical orbital energy in a nonrelativistic prob-
lem. Whenever such a situation occurs, in which the fast
degrees of freedom have widely spaced energy levels com-
pared to the slow ones, e.g. , in molecular physics where
the electronic level spacing is much greater than the nu-
clear rotational-vibrational energies, an adiabatic approx-
imation should give the dominant behavior. As in the
molecular case, we are motivated to look for approximate

Our task now is to project Hg onto the space of the
two-component wave functions of Eq. (6) and obtain an
eAective Hamiltonian for the orbital degrees of freedom.
Before we do so, we note that

I a, +;p) for p&0 are not
eigenstates of a3, which is the relativistic spin-z operator.
It is crucial in what follows that they are, in fact, eigen-
states of the appropriate nonrelativistic spin operator; we

shall return to this point below. Hence the two-com-
ponent function y, (p) of Eq. (6) may be viewed as a
nonrelativistic momentum-space wave function for a
spin- & particle. Its real-space counterpart is obtained as
usual by Fourier transformation.

We now express the eigenvalue problem Holy) =Elip)
in terms of the wave functions of Eq. (6) by applying
(p'I $(P, +;p'I to its left. In doing so we neglect the ma-

trix elements of V between positive and negative energy
states, as is appropriate for a Born-Oppenheimer approxi-
mation. We find the following:

r2

m+ yp(p')+ dpi'(P, +;p'la, +;p)(p'l vip)y. (p) =Fop(p'). (7)
a

Now since V(r) is slowly varying in a sense to be made precise below, (p'I Vlp) is sharply peaked about p'=p and
vanishes otherwise. We may therefore expand

(P, +;p'
I a, +;p) =6p. —Ap.(p) . (p' —p) +

Ap. (p) —=&P, +;plV I a, +;p) .

Ap, (p), as we have defined it, is the usual non-Abelian generalization of Berry s gauge potential [5,6]. Straightforward
calculation reveals

Ap. (p) = — ', pxess. ,
4m

where crp, =—(PIcrla). Inserting (8) in (7) we obtain

&2

m+~
2m

fO

~p(p')+ „dp&p'I vip&happ(p)
—

„dpi'

Ap. (p) (p' —p) &p'I vip&v. (p) =&up(p') . (10)

The third (Berry phase) term in (10) is the SO interaction as may be seen more clearly by Fourier transforming. We
find the real-space adiabatic eAective Hamiltonian to be

p2 l
m — + V(r) 6p

—rJp, ~
VV(r) XV.

2m 4m

We now brieAy discuss corrections to this expression.
The neglect of the oA-diagonal matrix elements
(P, —;p'la,+;p) in Eq. (7) may be shown to produce
corrections 7,/L smaller than SO eff'ects where A, is the
typical de Broglie wavelength of the electron and L is the
length scale over which the potential V(x) varies. Re-
placing the approximation in Eq. (8) with the exact ex-
pression produces corrections smaller by an additional
factor. SO eAects are, in turn, smaller than the kinetic
and potential terms by a factor of A,~/kL, where A. ~ is the

i
Compton wavelength of the electron. So long as L)&X, a
condition which is frequently satisfied, e.g. , in the
Thomas-Fermi treatment of atoms, SO eAects will dom-
inate the oA-diagonal terms and are hence a legitimate
ingredient of the nonrelativistic Hamiltonian in the adia-
batic approximation, even though they are higher order in

powers of 1/m than the off'-diagonal terms. The same
considerations apply to the standard FW approach, al-
though the SO eA'ects are frequently excluded from the
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first-order Hamiltonian on the basis of a naive estimation
of terms simply by counting powers of I/m. In fact the
normalized Lorentz boost equation (4) corresponds to the
first-order FW transformation and the adiabatic Hamil-
tonian agrees exactly with the first-order FW Hamiltoni-
an. What is new in this approach is its interpretation as
an adiabatic approximation where the SO interaction
arises from a nontrivial Berry phase.

We now show that the Berry connection Att, (p) is

directly related to the relativistic kinematic eA'ect of Tho-
mas precession. Thomas precession [up to O(t ) accura-
cy] is the following property of the Lorentz transforma-

tions:

A(v+8v) =R(68)A(6v)A(v), 68= —,
' (Svxv) . (12)

Here A(v) denotes a boost to a velocity v and R(88) a
rotation of ~88( about 88. The physical effect of the rota-
tion R in Eq. (12) is that an accelerating particle moving
at relativistic speed appears to precess in orientation:
This precession was shown by Thomas to add to the Lar-
mor precession to give the correct value to the SO in-
teraction. Equation (12) as we have written it is a
Lorentz-group property valid in all representations. In
context of the Dirac particle we use Eq. (12) to go from
~a, +;p) to )a, +;p+6p&:

~tt, +;p+Bp&=N(v, bv) I —i a. 68 1+ pi iQ, +;p&,
2 pp1

where the factor N(v, 6v) = I —v trav/2 is to keep the new states orthonormalized. Recalling the definition of the non-
Abelian potential and using Eq. (13),

Att . 6p =(P, +;p ~ a, +;p+ Sp& —(P, +;p ~ a, +;p& = —
2 i&8 (P ~

tr
~
a& . (14)

Inserting the value of the Thomas rotation from Eq. (12) gives us back our previous expression for Att, (p), Eq. (9).
Finally, we return to the interpretation of the states ~a, +;p& as nonrelativistic spin-z eigenstates. The distinction be-

tween relativistic and nonrelativistic spin has previously been discussed by Foldy and Wouthuysen [2]. We consider how
an infinitesimal rotation e. about an axis Q shufHes the components of the two-component wave function tit, (p):

(I —ieJ Q) ~p&
= ~p+ eQ x p)

I —ie la, +;p& =N(v)A(v) 1
—ie la& I+ &

—i p~ t'[o" Q—, tr. n] la& I+&
a" Q cr. Q

2 2 4

=~tt, +;p+eQ xp& —gi (a" Q)—tt, ~P, +;p&=P Std,
—i (rr Q—)p ~P, +;p+eQ x p&. (15)

P P

J—= the generator of rotations in orbital space, (o" Q)tt, =—(P~a" A~a&. And so, e.g. , a rotation about Q =e„R(e„e),
looks like

R(e-, e) ~y& =g"dpi' I —
& t —(tr=)p. tit. (p)lp& Ip, +;p&,

Pa

which supports our identification. [We have used a polar
representation (p, 8,&) for p. ] This completes our deriva-
tion of the SO interaction from the adiabatic limit of the
Dirac equation.
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