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Fluctuation-Induced Forces between Rough Surfaces
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External boundaries change the fluctuations of a correlated fluid, such as a liquid crystal, thereby
causing long-range interactions. We compute how the interaction between two parallel plates is
modified by the deformations of one plate. Corrections to the leading interaction decay with the average
separation of the plates through an exponent related to the roughness of the boundary. These interac-
tions may also modify the surface fluctuations of thin liquid films.

PACS numbers: 68.35.Bs, 05.70.3k, 61.30.By, 68.10.—m

External bodies (point particles, polymers, membranes,
etc.) immersed in a fluid modify its Auctuations by impos-
ing boundary conditions. Variations in the fluctuation
free energy in turn induce interactions between the exter-
nal bodies. Examples of these phenomena are the van der
Waals interaction between particles, and the Casimir
force between two plates [I], both due to quantum jluc-
tuations of the electromagnetic field. For bodies im-
mersed in a classical Auid, similar forces arise from re-
duced thermal fluctuations If the A.uid has short-range
correlations, the resulting forces are also short ranged,
while for a fluid with long-range correlations (e.g., binary
mixtures close to a critical point, superAuids, or liquid
crystals [2]), they are long ranged with universal charac-
teristics. We shall call all such Auctuation-induced in-
teractions Casimir forces. Thermal Casimir eA'ects in

critical systems are closely related to finite-size correc-
tions to the free energy [3]. They have also been dis-
cussed in several interesting contexts, such as wetting
close to a tricritical point [4], unbinding of fluid mem-
branes in liquid crystals [2,5), and the elongation of sur-
face domains in epitaxial growth [6].

Most computations of Casimir forces are for simple
geometries, e.g. , between two parallel plates. It is natural
to consider how these forces are modified by the rough-
ness that is present in most "random" surfaces. The in-
teractions can in turn alter the thermal fluctuations of a
fluid surface, or a liquid-crystal film. There are several
approaches to calculating Casimir interactions [1,7]. In
principle, a multiple-scattering approach [7] gives the in-
teractions for arbitrary geometry in a perturbation series.
Since we are only interested in relatively small deforma-
tions around "flat" geometries, we introduce a new
method of directly integrating the thermal Auctuations.
The method is quite generally applicable to many mani-
folds with arbitrary intrinsic, D, and embedding, d, di-
mensions.

Here we present results for interactions between two
plates with average separation 0, one of which is de-
formed from a flat geometry. We show that if the rough-
ness of the surface is self-similar [8], and characterized
by a roughness exponent gg, the leading I/H Casimir in-

4 2gsteraction has a correction that decays as 1/H '. We

estimate the magnitude of this correction using suitable
parameters and find that it may be detectable by current
force apparatus [9). This provides a possibility of deter-
mining gs by measuring the force. The Casimir interac-
tions also modify the Auctuations of a Auid/air interface:
For "like" boundaries, as in the case of a free-standing
liquid-crystal film, the interface deformations are en-
hanced to the lowest order, while for "unlike" boundaries,
e.g. , a smectic liquid-crystal film on a solid substrate,
they are suppressed.

We first consider a Auid with fluctuations described by
a one-component, isotropic field P(r), subject to a simple
quadratic Hamiltonian,

P [tt] = d r —,
' @[Vent(r)]'.

This is a correct description for the Goldstone modes of a
superAuid. Fluctuations of a liquid crystal involve more
components (for a nematic), and are anisotropic [2],
while those of a Auid at a critical point require a nonqua-
dratic action. These generalizations will be discussed
later on. We distinguish between two types of couplings
between the external bodies and the Auid: The field Auc-
tuations may be suppressed (type I), e.g. , by strong an-
choring for liquid crystals, and by substrates that prefer
one of the coexisting fluids in a critical mixture (a mag-
netic field in the spin analogy). Another possibility
occurs at open boundaries (type II) of the fluid, and cor-
responds to the suppression of the normal gradient of tt.
It is known that Casimir forces have universal amplitudes
which depend only on the universality class and the type
of the boundary conditions; the strength of the boundary
couplings is irrelevant [10-12]. Anticipating such univer-
sality, we implement the two types of boundary eN'ects by
requiring either the field p (type I) or its normal deriva-
tive 8&p (type II) to vanish on the surface of the external
bodies.

Consider n manifolds embedded in a Auid, each de-
scribed by its coordinates r, (x ). Here x is a D
dimensional internal coordinate for the manifold (D, =l
for a polymer and D, =2 for a membrane), and r, indi-
cates a position in the d-dimensional fluid. The Auc-
tuation-induced interactions between the manifolds are
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obtained by integrating over all configurations of the field p, with the constraints imposed by the external mani«ids.
Type-I boundary conditions correspond to the constraints p(r, (x,)) =0, for a =1,2, . . .n, which can be imposed by in-
serting delta functions. Using the integral representation of the delta function, we obtain

P,p [r.(x.) ]
exp

kT

n

&
Ziti(r) +2)y (x, )exp —Po[p]+i J dx, y, (x,)y(r (x ))

0 a=l (2)

where Zo is the partition function for the unperturbed Auid, and y (x,) are the auxiliary fields defined on the n mani-
folds, acting as sources coupled to p. After integrating over the field p, we obtain the long-range interactions between
the sources as

+eA
exp kT g 2)y (x )exp[ —P([i'.(x.)]] .

a=I

The action Q ~ [y,(x,) ] for the n-component field 4' = (y~, it's, . . . , itl„) is given by

n n

yf, [q ]—:q Mq = g g dx, dxii y, (x.)G (r.(x.) —rii(xti)) itfti(xii) (4)
a =1 P=l

where G (r)—=(p(r)y(0))o is the two-point correlation function of p in free space. Finally, the eA'ective interaction be-

tween the manifolds is obtained as

iY,ir[r, (x,)] =
& kT ln Det(M[r, (x,)]) . (s)

The matrix M is a functional of r, (x,) and its determinant is in general difficult to evaluate. It is possible, however,

to perturbatively calculate the corrections due to small deformations around simple geometries. As an explicit example,
we computed the interaction energy between two surfaces in d =3, with average separation H, and one plate deformed,
i.e., ri(x) =(x ~, xq, 0), rq(x) =(x ~, xq, H+ h(x) ). The result is P,tt='Hs. ,&+ /f„,„, where

(2') ~ 2ap
g(3) kT
16~ H2

(6)

is the Casimir interaction per unit area of two Aat plates. The first term in Eq. (6) is a contribution to the surface ten-

sion which depends on a lattice cutoff. The second term, decaying as 1/H, has a universal amplitude —g(3)/16tt
= —0.02391. The energy cost of the deformations is given by

I d xh (x)+ d xd y[h(x) —h(y)]3&(3)kT t p p kT
16&H4 &

1

gx'[x —yi' , &i(t)+, [Ki'(t)+K~(t)] ~,
2tr x —

y 'H' H
(7)

a, (t) —=

f OO ~ 2eM

K~(t) —=„du,„Jo(tu) .2tre" —
1

There is an implicit short-distance cutoA a for the power
laws in Eq. (7). The first term in Eq. (7) represents an
instability to deformations related to the attraction be-
tween plates. Remarkably, this term is also obtained by
replacing 1/H with 1/[H+h(x)1 in Eq. (6) and

averaging over the position x. The second term repre-
sents long-range interactions between deformations in-

duced by the fluctuations of the field. The first term in

the curly brackets is the conformation energy of the de-
formed surface in the absence of the second plate, and is
independent of H. The remaining terms represent corre-

where the overbar denotes quenched average, and gq is a
characteristic roughness exponent. Using Fq. (9) we can
take the average of the H-dependent terms in &,g to ob-

3276

where t =—~x
—y~/H, and the two kernel functions are

defined by lations due to the presence of the second plate. Both
2 K~ (t) and Kq(t) approach a constant as t 0. As

du Jo(tu), K [ (t) —1/t, and Kq (t )—exp( bt ), with b-
2tr(e '"—1) =3.3. The large-t behaviors of K~(t) and ICq(t) deter-

~8)
mine the long-range interactions between height fluctua-
tions.

Equation (7) can be used to calculate the Casimir
force between a flat and a quenched rough surface.
Many solid surfaces produced by rapid growth or deposi-
tion processes are characterized by self-similar fluctua-
tions [13]. The Auctuations of a self-afline surface [8]
grow as
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tain a free energy per unit area,

g(3) kT 3g(3) kTAgL ' Ci kTAv
16m H 16' H 4 H4 2&s

(10)

where L is the extent (upper cutoff) of the self-affine
structure, satisfying 8H=Az L '(&H to avoid contact
between plates. The coefficient Ci in Eq. (10), given by

+2xr '~'+' [K&(r)] 'j dh,

does weakly depend on the ratio L/H, but since the func-
tions K] and K2 decay rapidly at a large distance, it is

quite insensitive to L as long as L »H. For L »H»hH,
the interactions in Eq. (10) are arranged in order of de-
creasing strength. The largest efrect of randomness is to
increase the Casimir attraction by an amount proportion-
al to (AH/H) . The last term in Eq. (10) decays as

1/H ' and in principle can be used to indirectly mea-
sure the roughness exponent (s. In Eq. (10), if all

lengths are measured in units of an atomic scale ap (e.g. ,
the diameter of a surface atom), As becomes dimension-
less. Using a reasonable set of parameters, gs =0.35,
ap = 5 A, Ag = 1, and L = 300 A, we estimate that for
surfaces of 1 mm size, and 100 A apart, the forces gen-
erated by the three terms in Eq. (10) are 1.9x10
4.9x10 s, and 3.7x10 N, respectively (with an ap-
propriate lower cutoff of —20 A). The force generated
by the last term is in fact measurable with current force
apparatus [9] provided that one can subtract the strong
background forces generated by the first two terms.

We now consider how interactions in Eqs. (6) and (7)
are modified for more complex fluids. Fluctuations at a
critical point cannot be described by a quadratic action,
and hence it is not easy to integrate out the field p in Eq.
(2). Exact results in two dimensions [12] indicate that
the Casimir interaction between two flat plates decays as
—czrkT/24H for like boundaries, where c is the central
charge of the critical system. Repeating the compu-
tations leading to Eq. (6) in two dimensions yields
—xkT/24H, corresponding to c =1, as expected for a
free field theory. We make the likely conjecture that for
deformed surfaces, results from a quadratic action are
valid, except for a similar change of amplitude. We can
somewhat improve upon the magnitude of the amplitude
by using the correct two-point correlation functions of the
field theory for G(r) in Eq. (4). For example, using
G(r) —1/r 'i for the Ising model in d =2 reduces the am-
plitude by a factor of 1.5, giving rise to a value much
closer to the exact result (ci„.„s=0.5).

The above results can be easily generalized to aniso-
tropic fluids. With two coupling constants K& and K~~ for
fluctuations with wave vectors perpendicular and parallel
to the plates in Eq. (1), the amplitude of the Casimir in-

teraction is multiplied by (K4/K~~) '. Such anisotropy
is inherent in nematic liquid crystals: The energy cost of
fluctuations of the nematic director n are given by [14]

)Yg= d r —B1 SEC

2 Bz
+ x(V'a) ' (13)

The anisotropy introduces a length scale x:dx/B into-
the problem. For smectic layers parallel to the external
plates, the interaction now decays as 1/H ' . The de-
formations of one plate modify the interaction, and the
analog of Eq. (10) is

g(2) kT
16m HX

g(2) k TAMIL

16m ZH'

C2 k TAg (14)

with C2 expressible in terms of a diAerent set of kernel
functions. The first term in Eq. (14) is identical to that
obtained by Ajdari, Peliti, and Prost [2]. The decay of
the last term is again related to the roughness exponents
of the surface. Clearly these forces have the same magni-
tude as in the isotropic case of Eq. (10) for H =X, but
decay more slowly, and hence become comparatively
stronger for H »A, .

So far, we have calculated Casimir eA'ects for mani-
folds with type-I boundary conditions. Manifolds with
type-II or mixed boundary conditions can be handled
similarly. The type-II constraint, 84&=0, is inserted into
the functional integral via fX)@exp(iy8&iti), thus repre-
senting a dipole source. After integrating over p, we ob-
tain a quadratic action for the auxiliary fields +, as in Eq.
(4). However, whereas the coupling between two type-I
manifolds is G (r —r'), it is 84 G (r —r') between type I
and type II, and 8&B&G (r —r') between two type-II
manifolds. The remaining computations can proceed as
before. We find that two type-II boundaries still attract
with an amplitude I/(4x) i I (d/2) g(d), while mixed
boundary conditions result in a repulsion of amplitude
1
—2 times that of like boundaries. Similar behavior

is observed for smectic liquid-crystal layers [2], where the
ratio of the interactions between I-I, II-II, and I-II

/f~ =„d r —, [x~(V. n) +x2(n Vxn) +xi(nxVxn) ] .

(12)
If the nematic director is on average perpendicular to the
plates, its fluctuations parallel to the plate can be decom-
posed into transverse and longitudinal components. The
transverse (longitudinal) component is an anisotropic
field, with coupling constants x3 and xq (x~) perpendicu-
lar and parallel to the plates. Adding up the two contri-
butions, we find that the Casimir energies in Eqs. (6) are
multiplied by x3/xi+@3/x2. This is precisely the result
obtained by Ajdari, Peliti, and Prost [2].

An extreme limit of anisotropy is exhibited by smectic
liquid crystals, with a deformation energy
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boundary conditions is given by 1:1:2 ' " —1.
The h(x) dependence of the Casimir energy in Eq.

(7) may have important consequences for the I]uctuations
of a fluid surface, or a film. The Auctuations of a free
surface are governed by a surface tension energy
yfd x(Vh) /2. For sufficiently long wavelengths, the
first term in Eq. (7) dominates the surface tension and
modifies the I]uctuations. [The second term in Eq. (7) is
equivalent to an increase in surface tension of roughly
10 dyn/cm. ] For like boundaries (such as a free-
standing film) there is an instability to deformations,
while for unlike boundaries (e.g. , a film on a solid sub-
strate) there is an additional stabilizing force. In the ab-
sence of any other interactions, the crossover length is
Xo—24 (y„tt/kT) 'l H . For a film which is 100 A thick,
typical Auid-air interfacial tension yields Xo—4 pm. Of
course, additional stabilizing forces may be present. For
example, gravity produces an energy cost of pg fd xh /2
for deformations. This is larger than the Casimir defor-
mation energy for thicknesses H & 0.6(kT/pg) 't =0.5
pm. Similarly, for a smectic liquid-crystal film, the
crossover length is Xo —35(y,n/kT)'t H l

7
' . We esti-

mate that Ao —6 pm for H =100 A, and gravity becomes
important for thicknesses H & 2 pm. There are few ex-
periments measuring the roughness of liquid surfaces
[15]. It would be interesting if future experiments can
probe the effects of Casimir forces on the surface rough-
ness of thin liquid films.

In summary, we have computed Auctuation-induced
long-range interactions between slightly deformed plates
for a variety of correlated Auids. These interactions can
modify the Auctuations of the surface of thin fluids, and
lead to interesting power-law corrections to the Casimir
force between self-aSnely rough substrates. The meth-
ods introduced can be easily generalized to calculate the
interaction between other types of manifolds: For exam-
ple, we find a 1/H energy between a surface and a long
directed polymer parallel to it. We also computed the in-

teraction of two-dimensional domains with fixed bound-
ary shapes. Details of these results will be published else-
where.
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