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Pressure-Induced High-Spin to Low-Spin Transition in CaFe03
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In situ '7Fe Mossbauer spectroscopy and x-ray diffraction on CaFe03 (Fe +:t/e ') under pressure
have revealed a first-order high-spin (S=2) to low-spin (S=1) transition near 30 GPa. The spin and
structure transition is an alternative manifestation of the electronic instabilities of the o-bonding Fe-0-
Fe orbitals; at atmospheric pressure a second-order disproportionation 2Fe + Fe + Fe +, 0 ~ 6
~ 1, occurs at a TI =290 K. Such instabilities found at the transition from localized to itinerant cr-
band electrons reflect a sensitivity to interactions with the lattice.

PACS numbers: 62.50.+p, 61.50.Em, 71.70.Ch, 76.80.+y

The recent discovery of high-temperature superconduc-
tivity in copper oxides [1] and a new interpretation of
photoetnission spectroscopy data [2] have revived interest
within the condensed-matter physics community in a full-
er understanding of the 3d transition-metal oxides. For
example, spectroscopic data [3] appear to indicate that
the band gaps of insulating late transition-metal oxides
like NiO are of a ligand-to-metal charge-transfer type.
Perovskite oxides have a relatively simple structure and
allow late 3d transition metals to be stabilized in unusual-

ly high valence states. An increase in formal valency
makes the M-0 bond more covalent, thereby increasing
the admixture of 0:2p and M:3d wave functions in the
electronic states near the Fermi energy. Transitions from
more ionic to more covalent bonding may enhance the
importance of electron-lattice interactions.

The properties of the perovskites LaMn03, CaFe03,
and SrFe03 provide an interesting comparison. Each
compound contains an octahedral-site transition-metal
ion with a high-spin d =t2e' configuration at atmos-

pheric pressure. In each case the half-filled t2 orbitals
are localized, while an evolution in the strength of the
e-0:2p -e interactions imparts quite distinctive properties
to each compound. In LaMn03, the e electrons are
sufficiently localized that a classical cooperative Jahn-
Teller distortion removes the e-orbital degeneracy [4].
Stronger covalent mixing at an Fe + versus a Mn + ion

increases the ca. 180 e-0:2p -e interactions, and the lo-

calized e orbitals become transformed into a narrow cr*

band that is one-quarter filled [5]. Such a band would

contribute itinerant-electron ferromagnetic coupling to
compete with antiferromagnetic t 2 -0:2p -t 2 superex-
change interactions; it would also give metallic conduc-
tivity to lowest temperatures. Indeed, SrFe03 is metal-
lic down to 4 K [6] and has a ferromagnetic nearest-
neighbor interaction [7]. On the other hand, CaFe03 un-

dergoes a second-order phase transition that is typical of
a narrower a* band at the transition from localized to
itinerant-electronic behavior [8]. The transition is a

disproportionation reaction expressed formally as

2F 4+ (I 3 41) F 4 —s(t 3 I +5) + F 4+s(t 3 I
—s)

where 6=0 for T & 290 K increases continuously with
decreasing temperature below 290 K; typically 6 ap-
proaches unity at low temperatures.

A recent x-ray photoemission and ultraviolet photo-
emission spectroscopic study of SrFe03 deduced a very
small charge-transfer energy of 0-1 eV and also a small
charge Auctuation energy, &( 1 eV, for d +d d
+d L (L denotes ligand hole) as the common back-
ground of the itinerant character of SrFe03 and the
charge disproportionation of CaFe03 [9]. The dispropor-
tionation could be interpreted naturally as the formation
of a charge-density wave in which a cooperative oxygen
displacement introduces ca. 180 Fe +-0. Fe + in-
teractions in all three crystallographic directions. Such a
freezing out of a breathing phonon mode has found
theoretical support [10]. Where the e-0:2p -e interac-
tions are stronger, as appears to be the case of SrFe03 in

spite of the larger lattice parameter, the quarter-filled
a*' band of itinerant electrons does not disproportionate.

Mossbauer spectroscopic studies [8,11] of the systems
Ca~ —„Sr„Fe03and Sr[ JLa~Fe03 have revealed a delL-

cate balance between the relative strengths of the Fe-0-
Fe interactions and the electron-phonon interactions for
the disproportionation reaction to occur. For example,
the disproportionation parameter 6 was found experimen-
tally to depend monotonically upon the Sr content in each
solid solution. It is only pure SrFe03 that retains the sin-

gle Fe + (8=0) state down to lowest temperatures.
High pressure provides an alternative physical variable

in which to compare these three compounds. For exam-
ple, we may anticipate a transition from high-spin to
low-spin Fe + as an alternative to disproportionation for
the creation of empty, itinerant o.* states and localized
electrons —in this case as localized tq configurations; ac-
cording to theoretical calculations [12], the gap between
the two spin states tends to collapse quickly as the Fe-0
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bond is contracted. High pressure also changes the rela-
tive strengths of the antiferromagnetic t2-0:2p -t2 and
either ferromagnetic e ' -0:2p -e superexchange interac-
tions or ferromagnetic correlations within a quarter-filled
o*' band of itinerant-electron states. We have reported
previously [13] on the effect of hydrostatic pressure on
SrFe03, here we report a pressure-induced high-spin to
low-spin transition in CaFe03 found by in situ
Mossbauer spectroscopy. The transition is accompanied
by a serious structural change as found in situ by x-ray
diffraction (XRD).

Ca Fe03 was prepared by oxidation of Ca2 Fe20& in

a belt high-pressure apparatus using KC104 as an oxygen
source under 6 GPa at 1050 C for 30 min. The product
was shown to be single phase by XRD and Mossbauer
spectroscopy. At room temperature, CaFe03 has the
tetragonal perovskite structure with a, =5.332 A and

c, =7.550 A, where a, /&2= c/2 = 3.8 A is a typical
cubic-perovskite lattice constant [14]. Mossbauer mea-
surements under pressure up to 51 GPa were performed
with a diamond-anvil cell of the Bassett type charged
with the sample powder in a rhenium gasket with a 0.3-
mm-diam hole [12]. The applied pressure was monitored
by the fluorescent shift of ruby powder mixed with the
sample. XRD was also performed with a similar dia-
mond-anvil cell. A new sample of SrFe03 was also
prepared in the same manner and used for XRD under
pressure up to 53 GPa.

The pressure dependence of the room-temperature
Mossbauer spectrum is shown in Fig. 1. The ambient-
pressure spectrum of a sample containing natural iron,
Fig. 1(a), consists of a single narrow line with a CS of
0.048 mm/s relative to a-Fe. At 21 GPa, Fig. 1(b), a
broadened singlet and a weak magnetic component are
mixed; the broadening is a saturation eA'ect caused by the
packing of the Fe-enriched ()90%) sample in the tiny
pressure cell. The magnetic component comes from
Ca2Fe2Oq, which is stable under low oxygen pressures
and appears to have formed either during a long-term
storage of the sample in a desiccator or from heating in

the laser beam used for high-pressure calibration. More-
over, the singlet absorption peak from CaFeO3 is more
strongly broadened by saturation than is the magnetic
component due to the Ca2Fe2Oq impurity, which em-
phasizes the magnetic contaminant.

At 30 GPa, Fig. 1(c), the central singlet peak is begin-
ning to be replaced by a magnetic pattern. At higher
pressure, the magnetic splitting becomes clear. Like
SrFe03, but unlike CaFeO3 in its disproportionated state,
CaFeO3 under pressure contains only Fe + ions at room
temperature. However, unlike SrFeO3, the CS of Ca-
Feo& is reduced abruptly at 30 GPa by 0.25 mm/s and a
magnetic hyperfine field of 0; = 16 T appears, see Fig.
1(e). The H; value remains constant at higher pressures.
The broadened spectrum in the transition region —Fig.
1(c)—can be reproduced by superimposing the paramag-
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FIG. 1. Pressure-dependent Mossbauer spectra of CaFe03 at
room temperature. Applied pressures are (a) 0. 1 MPa, (b) 21
GPa, (c) 30 GPa, and (d) 41 GPa (Si —Sz= —0.10 mms ').
The sample for (a) contains natural iron, while the other spec-
tra were obtained with an Fe-enriched sample. Solid lines are
the computer-fitted results. The peaks marked by arrows in (b)
come from Ca2Fe20~ (see text). Pressure-dependent center
shift (CS) and magnetic hyperfine field (H;) data for CaFeO&
are shown in (e).
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netic singlet of Fig. 1(b) and the magnetic pattern of Fig.
1 (d). We are thus led to the conclusion that a first-order
transition occurs at a P, = 30 GPa.

High-pressure XRD shows a change on crossing the
transition from the J2a x J2a x 2a tetragonal structure to
a 2a x2a &2a orthorhombic structure, where a represents
the basic perovskite parameter. Shown in Fig. 2 is the
pressure-induced splitting of the (220) peak into the
(400) and (040) peaks of the high-pressure phase as well
as the pressure dependence of the lattice constants on
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FIG. 2. Pressure-dependent (a) XRD peaks and (b) lattice
constants for the hypothetical unimolecular perovskite cell for
CaFe03. In reality CaFe03 has a tetramolecular tetragonal cell
of at x aI xci for P ~ 30 GPa and an octomolecular orthorhom-
bic one of a„xbpxcp. Plotted here are (0) a, /J2 and (O) c, /2
for P ~ 30 GPa, and (0) ap/2, (A) bp/2, and (U) cp/2 for
P & 30 GPa.

crossing the transition. The orthorhombic distortion of
the high-pressure phase is quite remarkable. The appear-
ance of a quadruple interaction in the Mosssbauer spectra
of the high-pressure phase [Fig. 1(d)] provides evidence
of the structural change with a microscopic probe. On
release of pressure the original low-pressure phase is
recovered as seen by both Mossbauer and XRD measure-
ments.

On the other hand, isotropic compression of SrFe03 up
to 53 GPa causes a considerable increase in the Neel tem-
perature Trv (=300 K at 19 GPa), but it does not induce
any disproportion or any other transition [13]. The struc-
ture remains cubic over the pressure range studied
without any noticeable anomaly at Tz.

The first-order phase change at a P, = 30 GPa appears
to be a high-spin to low-spin transition for the following
reasons. First, the drop in CS by —0.25 mm/s is quite
remarkable. Such a drop requires a significant electron-
density redistribution such that the s-electron density at
an Fe nucleus is enhanced by Ap(0) —0.8 a.u. [15] in

the high-pressure phase. Although we have no quantita-
tive estimates, the observed change in CS is consistent
with what has been found at high-spin to low-spin transi-
tions in various iron compounds. Second, the pressure in-
dependence of H; signals that saturation has been
reached, yet its value of about 16 T is significantly small-
er than the 23.3 T found for SrFe03 at 53 GPa [13]; it is
also smaller than the saturated H; values of SrFe03 and
CaFe03 at ambient pressure. The H; =33-34 T observed
for high-spin Fe + (S=2) [8,11] may be expected to be
scaled down by a factor of 2 at a low-spin Fe + (5 =1)
ion in high-pressure CaFe03.

A low-spin state occurs where the cubic-field splitting
6, exceeds the intra-atomic-exchange splitting A,„.It is
reasonable to assume that an external pressure increases
A, through a more enhanced increase in covalency for a
vs z bonding; both CaFe03 and SrFe03 could exhibit a
high-spin to low-spin transition. In order to understand
why the low-spin state of CaFe03 is stabilized for a unit-
cell volume V~47 A whereas SrFe03 remains cubic
and retains the high-spin state even for V=47 A con-
sideration of the differences between Ca + and Sr + ions
is required.

The Ca + ion is distinguished from the Sr + ion not
only by its smaller size (1.35 vs 1.44 A for twelvefold
coordination), but also by the greater covalent component
in the Ca-0 bond. The smaller size of the Ca + ion in-

duces a distortion of the structure from cubic to tetrago-
nal symmetry whereas SrFe03 remains cubic to lowest
temperatures. The cubic perovskite retains 180 Fe-0-Fe
bonding whereas the Fe-0-Fe bonds are bent from 180
in tetragonal CaFe03. This bending makes the Fe-0
bond length greater than half the Fe-Fe distance; it also
reduces the strength of the Fe-0-Fe interactions, which is

probably why the o* band in CaFe03 appears to be nar-
rower than that in SrFe03 despite the smaller lattice pa-
rameter of CaFe03.

The covalent component of the 2-0 bond of an 2803
perovskite competes directly with the t2 orbitals of a
transition-metal B cation for the 0:2p electrons. The
difference in covalency between the Ca + and Sr + ions
makes the z component of the covalent Fe-0 bond small-
er in CaFe03 than in SrFe03. Moreover, bending of the
Fe-0-Fe bond from 180 reduces the strength of the Fe-
0-Fe interactions, but it does not reduce the a. component
of the Fe-0 bond covalency. Thus, h,, in CaFe03 would
be increased relative to h,, in SrFe03, and it should take a
smaller increase in d, to make d„/A,„=1 in the case of
CaFe03, which would account for a lower P, in CaFe03
than in SrFe03. Another mechanism mediated by a cou-
pling with the lattice system is a strain-induced splitting
and crossing of the highest up-spin levels and the lowest
down-spin levels. According to theoretical estimations
[12], the gap between the two spin states for a regular
(Fe06)" octahedron embedded in a Madelung potential
representing the host lattice decreases with decreasing
bond distance and finally vanishes at d F, o= 1.7
(V=40 A for a cubic unit cell). However, the gap may
be collapsed at a larger average Fe-0 distance if the dis-
tortion of the octahedron is serious enough to cause large
splittings of the relevant levels. A broader a* band in

SrFe03 may allow a more gradual crossover to the low-

spin state without any structural distortion.
As noted above, dH;/dP =0 in high-pressure CaFe03

indicates a magnetically saturated state. From the Bril-
louin function for 5=1 and a saturation H; =16 T, we
estimate a magnetic transition temperature T ~800 K,
which is much higher than the TIv =116 K for the high-
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spin state under ambient pressure. The low-spin t 2—

0:2p -tq antiferromagnetic superexchange interactions
have no ferromagnetic competition from the empty o.-

bonding orbitals. By way of contrast, ferromagnetic
SrRu03 (T, =160 K) contains degenerate and delocal-
ized t2 orbitals forming a narrow z* band that is two-
thirds filled. A narrower x* band in slightly distorted
CaRuO3 gives a negative Weiss constant in the Curie-
Weiss paramagnetic susceptibility and remains paramag-
netic down to 4 K [16]. The localized t2-0-t2 con-
figurations in CaFe03 give a strong antiferromagnetic su-
perexchange interaction.

In summary, high-pressure Mossbauer spectroscopy
and XRD have demonstrated the existence of a first-order
phase change at a critical pressure P, = 30 GPa from a
high-spin to a low-spin state at the Fe + cations of Ca-
Fe03. Since CaFe03 exhibits a second-order dispropor-
tionation into Fe + and Fe below a transition
temperature T, =290 K at ambient pressure, the low-spin
phase represents a third electronic state in CaFe03.
From the hyperfine field in the high-pressure phase, the
low-spin CaFe03 appears to be antiferromagnetic with a
Neel temperature estimated to be T~ ~ 800 K. The
diAerent electronic behavior of SrFe03 has been rational-
ized on the basis of the larger size of the Sr + ion and
smaller covalent component in the Sr-0 bond.
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