Pressure-Induced High-Spin to Low-Spin Transition in CaFeO₃

M. Takano,^{(1),(a)} S. Nasu,⁽¹⁾ T. Abe,⁽¹⁾ K. Yamamoto,⁽¹⁾ S. Endo,⁽¹⁾ Y. Takeda,⁽²⁾

and J. B. Goodenough,⁽³⁾

⁽¹⁾Research Center for Extreme Materials and Department of Materials Physics,

Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

⁽²⁾Department of Chemistry, Faculty of Engineering, Mie University, Tsu 514, Japan

⁽³⁾Center for Materials Science and Engineering, ETC 5.160, University of Texas at Austin, Austin, Texas 78712-1084

(Received 29 July 1991)

In situ ⁵⁷Fe Mössbauer spectroscopy and x-ray diffraction on CaFeO₃ (Fe⁴⁺: $t_2^3e^1$) under pressure have revealed a first-order high-spin (S=2) to low-spin (S=1) transition near 30 GPa. The spin and structure transition is an alternative manifestation of the electronic instabilities of the σ -bonding Fe-O-Fe orbitals; at atmospheric pressure a second-order disproportionation $2Fe^{4+} \leftrightarrow Fe^{4-\delta} + Fe^{4+\delta}$, $0 \le \delta$ ≤ 1 , occurs at a $T_i \approx 290$ K. Such instabilities found at the transition from localized to itinerant σ^* band electrons reflect a sensitivity to interactions with the lattice.

PACS numbers: 62.50.+p, 61.50.Em, 71.70.Ch, 76.80.+y

The recent discovery of high-temperature superconductivity in copper oxides [1] and a new interpretation of photoemission spectroscopy data [2] have revived interest within the condensed-matter physics community in a fuller understanding of the 3d transition-metal oxides. For example, spectroscopic data [3] appear to indicate that the band gaps of insulating late transition-metal oxides like NiO are of a ligand-to-metal charge-transfer type. Perovskite oxides have a relatively simple structure and allow late 3d transition metals to be stabilized in unusually high valence states. An increase in formal valency makes the M-O bond more covalent, thereby increasing the admixture of O:2p and M:3d wave functions in the electronic states near the Fermi energy. Transitions from more ionic to more covalent bonding may enhance the importance of electron-lattice interactions.

The properties of the perovskites LaMnO₃, CaFeO₃, and SrFeO₃ provide an interesting comparison. Each compound contains an octahedral-site transition-metal ion with a high-spin $d^4 = t_2^3 e^1$ configuration at atmospheric pressure. In each case the half-filled t_2^3 orbitals are localized, while an evolution in the strength of the $e - O(2p_{\alpha} - e)$ interactions imparts quite distinctive properties to each compound. In LaMnO₃, the e electrons are sufficiently localized that a classical cooperative Jahn-Teller distortion removes the e-orbital degeneracy [4]. Stronger covalent mixing at an Fe⁴⁺ versus a Mn³⁺ ion increases the ca. 180° e-O:2 p_{σ} -e interactions, and the localized e orbitals become transformed into a narrow σ^* band that is one-quarter filled [5]. Such a band would contribute itinerant-electron ferromagnetic coupling to compete with antiferromagnetic t_2^3 -O: $2p_{\pi}$ - t_2^3 superexchange interactions; it would also give metallic conductivity to lowest temperatures. Indeed, SrFeO3 is metallic down to 4 K [6] and has a ferromagnetic nearestneighbor interaction [7]. On the other hand, CaFeO₃ undergoes a second-order phase transition that is typical of a narrower σ^* band at the transition from localized to itinerant-electronic behavior [8]. The transition is a

disproportionation reaction expressed formally as

$$2\mathrm{Fe}^{4+}(t_2^3\sigma^{*1}) \leftrightarrow \mathrm{Fe}^{4-\delta}(t_2^3e^{1+\delta}) + \mathrm{Fe}^{4+\delta}(t_2^3e^{1-\delta}),$$

where $\delta = 0$ for T > 290 K increases continuously with decreasing temperature below 290 K; typically δ approaches unity at low temperatures.

A recent x-ray photoemission and ultraviolet photoemission spectroscopic study of SrFeO₃ deduced a very small charge-transfer energy of 0-1 eV and also a small charge fluctuation energy, $\ll 1$ eV, for $d^4 + d^4 \rightarrow d^5$ $+d^{4}L$ (L denotes ligand hole) as the common background of the itinerant character of SrFeO3 and the charge disproportionation of CaFeO₃ [9]. The disproportionation could be interpreted naturally as the formation of a charge-density wave in which a cooperative oxygen displacement introduces ca. 180° Fe⁵⁺-O···Fe³⁺ interactions in all three crystallographic directions. Such a freezing out of a breathing phonon mode has found theoretical support [10]. Where the e-O:2 p_{σ} -e interactions are stronger, as appears to be the case of SrFeO₃ in spite of the larger lattice parameter, the quarter-filled σ^{*1} band of itinerant electrons does not disproportionate.

Mössbauer spectroscopic studies [8,11] of the systems $Ca_{1-x}Sr_xFeO_3$ and $Sr_{1-y}La_yFeO_3$ have revealed a *delicate balance* between the relative strengths of the *Fe-O-Fe interactions* and the *electron-phonon* interactions for the disproportionation reaction to occur. For example, the disproportionation parameter δ was found experimentally to depend monotonically upon the Sr content in each solid solution. It is only pure SrFeO₃ that retains the single Fe⁴⁺ (δ =0) state down to lowest temperatures.

High pressure provides an alternative physical variable in which to compare these three compounds. For example, we may anticipate a transition from high-spin to low-spin Fe⁴⁺ as an alternative to disproportionation for the creation of empty, itinerant σ^* states and localized electrons—in this case as localized t_2^4 configurations; according to theoretical calculations [12], the gap between the two spin states tends to collapse quickly as the Fe-O

1.00

(a)

bond is contracted. High pressure also changes the relative strengths of the antiferromagnetic t_2^3 -O: $2p_{\pi}-t_2^3$ and either ferromagnetic e^1 -O: $2p_{\sigma}-e^0$ superexchange interactions or ferromagnetic correlations within a quarter-filled σ^{*1} band of itinerant-electron states. We have reported previously [13] on the effect of hydrostatic pressure on SrFeO₃; here we report a pressure-induced high-spin to low-spin transition in CaFeO₃ found by *in situ* Mössbauer spectroscopy. The transition is accompanied by a serious structural change as found *in situ* by x-ray diffraction (XRD).

Ca⁵⁷FeO₃ was prepared by oxidation of Ca⁵⁷Fe₂O₅ in a belt high-pressure apparatus using KClO₄ as an oxygen source under 6 GPa at 1050 °C for 30 min. The product was shown to be single phase by XRD and Mössbauer spectroscopy. At room temperature, CaFeO₃ has the tetragonal perovskite structure with $a_t = 5.332$ Å and $c_l = 7.550$ Å, where $a_l/\sqrt{2} \approx c/2 \approx 3.8$ Å is a typical cubic-perovskite lattice constant [14]. Mössbauer measurements under pressure up to 51 GPa were performed with a diamond-anvil cell of the Bassett type charged with the sample powder in a rhenium gasket with a 0.3mm-diam hole [12]. The applied pressure was monitored by the fluorescent shift of ruby powder mixed with the sample. XRD was also performed with a similar diamond-anvil cell. A new sample of SrFeO₃ was also prepared in the same manner and used for XRD under pressure up to 53 GPa.

The pressure dependence of the room-temperature Mössbauer spectrum is shown in Fig. 1. The ambientpressure spectrum of a sample containing natural iron, Fig. 1(a), consists of a single narrow line with a CS of 0.048 mm/s relative to α -Fe. At 21 GPa, Fig. 1(b), a broadened singlet and a weak magnetic component are mixed; the broadening is a saturation effect caused by the packing of the 57 Fe-enriched (>90%) sample in the tiny pressure cell. The magnetic component comes from $Ca_2Fe_2O_5$, which is stable under low oxygen pressures and appears to have formed either during a long-term storage of the sample in a desiccator or from heating in the laser beam used for high-pressure calibration. Moreover, the singlet absorption peak from CaFeO₃ is more strongly broadened by saturation than is the magnetic component due to the Ca₂Fe₂O₅ impurity, which emphasizes the magnetic contaminant.

At 30 GPa, Fig. 1(c), the central singlet peak is beginning to be replaced by a magnetic pattern. At higher pressure, the magnetic splitting becomes clear. Like SrFeO₃, but unlike CaFeO₃ in its disproportionated state, CaFeO₃ under pressure contains only Fe⁴⁺ ions at room temperature. However, unlike SrFeO₃, the CS of Ca-FeO₃ is reduced abruptly at 30 GPa by 0.25 mm/s and a magnetic hyperfine field of $H_i = 16$ T appears, see Fig. 1(e). The H_i value remains constant at higher pressures. The broadened spectrum in the transition region—Fig. 1(c)—can be reproduced by superimposing the paramag-

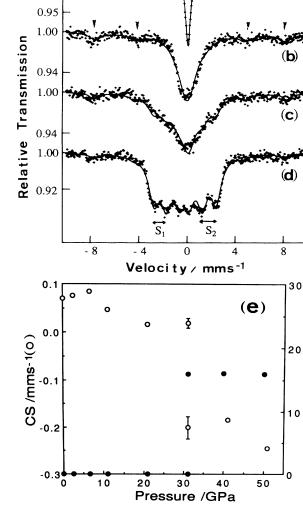


FIG. 1. Pressure-dependent Mössbauer spectra of CaFeO₃ at room temperature. Applied pressures are (a) 0.1 MPa, (b) 21 GPa, (c) 30 GPa, and (d) 41 GPa $(S_1 - S_2 = -0.10 \text{ mm s}^{-1})$. The sample for (a) contains natural iron, while the other spectra were obtained with an ⁵⁷Fe-enriched sample. Solid lines are the computer-fitted results. The peaks marked by arrows in (b) come from Ca₂Fe₂O₅ (see text). Pressure-dependent center shift (CS) and magnetic hyperfine field (H_i) data for CaFeO₃ are shown in (e).

netic singlet of Fig. 1(b) and the magnetic pattern of Fig. 1(d). We are thus led to the conclusion that a first-order transition occurs at a $P_c \approx 30$ GPa.

High-pressure XRD shows a change on crossing the transition from the $\sqrt{2}a \times \sqrt{2}a \times 2a$ tetragonal structure to a $2a \times 2a \times 2a$ orthorhombic structure, where *a* represents the basic perovskite parameter. Shown in Fig. 2 is the pressure-induced splitting of the (220) peak into the (400) and (040) peaks of the high-pressure phase as well as the pressure dependence of the lattice constants on

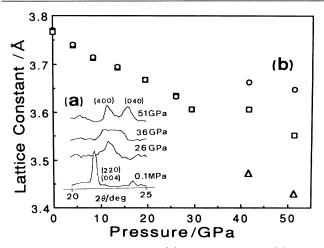


FIG. 2. Pressure-dependent (a) XRD peaks and (b) lattice constants for the hypothetical unimolecular perovskite cell for CaFeO₃. In reality CaFeO₃ has a tetramolecular tetragonal cell of $a_t \times a_t \times c_t$ for $P \le 30$ GPa and an octomolecular orthorhombic one of $a_0 \times b_0 \times c_0$. Plotted here are (O) $a_t/\sqrt{2}$ and (\Box) $c_t/2$ for $P \le 30$ GPa, and (O) $a_0/2$, (Δ) $b_0/2$, and (\Box) $c_0/2$ for P > 30 GPa.

crossing the transition. The orthorhombic distortion of the high-pressure phase is quite remarkable. The appearance of a quadruple interaction in the Mossisbauer spectra of the high-pressure phase [Fig. 1(d)] provides evidence of the structural change with a microscopic probe. On release of pressure the original low-pressure phase is recovered as seen by both Mössbauer and XRD measurements.

On the other hand, isotropic compression of $SrFeO_3$ up to 53 GPa causes a considerable increase in the Néel temperature T_N (≈ 300 K at 19 GPa), but it does not induce any disproportion or any other transition [13]. The structure remains cubic over the pressure range studied without any noticeable anomaly at T_N .

The first-order phase change at a $P_c \approx 30$ GPa appears to be a high-spin to low-spin transition for the following reasons. First, the drop in CS by ~ 0.25 mm/s is quite remarkable. Such a drop requires a significant electrondensity redistribution such that the s-electron density at an ⁵⁷Fe nucleus is enhanced by $\Delta \rho(0) \sim 0.8$ a.u. [15] in the high-pressure phase. Although we have no quantitative estimates, the observed change in CS is consistent with what has been found at high-spin to low-spin transitions in various iron compounds. Second, the pressure independence of H_i signals that saturation has been reached, yet its value of about 16 T is significantly smaller than the 23.3 T found for SrFeO₃ at 53 GPa [13]; it is also smaller than the saturated H_i values of SrFeO₃ and CaFeO₃ at ambient pressure. The $H_i = 33-34$ T observed for high-spin Fe^{4+} (S=2) [8,11] may be expected to be scaled down by a factor of 2 at a low-spin Fe^{4+} (S=1) ion in high-pressure CaFeO₃.

A low-spin state occurs where the cubic-field splitting Δ_c exceeds the intra-atomic-exchange splitting Δ_{ex} . It is reasonable to assume that an external pressure increases Δ_c through a more enhanced increase in covalency for σ vs π bonding; both CaFeO₃ and SrFeO₃ could exhibit a high-spin to low-spin transition. In order to understand why the low-spin state of CaFeO₃ is stabilized for a unit-cell volume $V \leq 47$ Å³ whereas SrFeO₃ remains cubic and retains the high-spin state even for V = 47 Å³ consideration of the differences between Ca²⁺ and Sr²⁺ ions is required.

The Ca²⁺ ion is distinguished from the Sr²⁺ ion not only by its smaller size (1.35 vs 1.44 Å for twelvefold coordination), but also by the greater covalent component in the Ca-O bond. The smaller size of the Ca²⁺ ion induces a distortion of the structure from cubic to tetragonal symmetry whereas SrFeO₃ remains cubic to lowest temperatures. The cubic perovskite retains 180° Fe-O-Fe bonding whereas the Fe-O-Fe bonds are bent from 180° in tetragonal CaFeO₃. This bending makes the Fe-O bond length greater than half the Fe-Fe distance; it also reduces the strength of the Fe-O-Fe interactions, which is probably why the σ^* band in CaFeO₃ appears to be narrower than that in SrFeO₃ despite the smaller lattice parameter of CaFeO₃.

The covalent component of the A-O bond of an ABO_3 perovskite competes directly with the t_2 orbitals of a transition-metal *B* cation for the $O:2p_{\pi}$ electrons. The difference in covalency between the Ca²⁺ and Sr²⁺ ions makes the π component of the covalent Fe-O bond smaller in CaFeO₃ than in SrFeO₃. Moreover, bending of the Fe-O-Fe bond from 180° reduces the strength of the Fe-O-Fe interactions, but it does not reduce the σ component of the Fe-O bond covalency. Thus, Δ_c in CaFeO₃ would be increased relative to Δ_c in SrFeO₃, and it should take a smaller increase in Δ_c to make $\Delta_c/\Delta_{ex} \approx 1$ in the case of CaFeO₃, which would account for a lower P_c in CaFeO₃ than in SrFeO₃. Another mechanism mediated by a coupling with the lattice system is a strain-induced splitting and crossing of the highest up-spin levels and the lowest down-spin levels. According to theoretical estimations [12], the gap between the two spin states for a regular $(FeO_6)^{8-}$ octahedron embedded in a Madelung potential representing the host lattice decreases with decreasing bond distance and finally vanishes at $d_{\rm Fe-O} \simeq 1.7$ Å $(V \simeq 40 \text{ Å}^3 \text{ for a cubic unit cell})$. However, the gap may be collapsed at a larger average Fe-O distance if the distortion of the octahedron is serious enough to cause large splittings of the relevant levels. A broader σ^* band in SrFeO₃ may allow a more gradual crossover to the lowspin state without any structural distortion.

As noted above, $dH_i/dP \approx 0$ in high-pressure CaFeO₃ indicates a magnetically saturated state. From the Brillouin function for S=1 and a saturation $H_i=16$ T, we estimate a magnetic transition temperature $T_m \gtrsim 800$ K, which is much higher than the $T_N=116$ K for the highspin state under ambient pressure. The low-spin t_2^4 -O: $2p_{\pi}-t_2^4$ antiferromagnetic superexchange interactions have no ferromagnetic competition from the empty σ bonding orbitals. By way of contrast, ferromagnetic SrRuO₃ ($T_c = 160$ K) contains degenerate and delocalized t_2 orbitals forming a narrow π^* band that is twothirds filled. A narrower π^* band in slightly distorted CaRuO₃ gives a negative Weiss constant in the Curie-Weiss paramagnetic susceptibility and remains paramagnetic down to 4 K [16]. The localized t_2^4 -O- t_2^4 configurations in CaFeO₃ give a strong antiferromagnetic superexchange interaction.

In summary, high-pressure Mössbauer spectroscopy and XRD have demonstrated the existence of a first-order phase change at a critical pressure $P_c \approx 30$ GPa from a high-spin to a low-spin state at the Fe⁴⁺ cations of Ca-FeO₃. Since CaFeO₃ exhibits a second-order disproportionation into Fe^(4+ δ) and Fe^(4- δ) below a transition temperature $T_t = 290$ K at ambient pressure, the low-spin phase represents a third electronic state in CaFeO₃. From the hyperfine field in the high-pressure phase, the low-spin CaFeO₃ appears to be antiferromagnetic with a Néel temperature estimated to be $T_N \gtrsim 800$ K. The different electronic behavior of SrFeO₃ has been rationalized on the basis of the larger size of the Sr²⁺ ion and smaller covalent component in the Sr-O bond.

- ^(a)Permanent address: Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611, Japan.
- [1] J. G. Bednorz and K. A Müller, Z. Phys. 64, 189 (1986).
- [2] J. Zaanen et al., Phys. Rev. Lett. 55, 418 (1985).
- [3] A. Fujimori et al., Phys. Rev. B 42, 7580 (1990).
- [4] J. B. Goodenough, Phys. Rev. 100, 564 (1955).
- [5] C. Gleitzer and J. B. Goodenough, Struct. Bonding 61, 1 (1985).
- [6] J. B. MacChesney et al., J. Chem. Phys. 43, 1907 (1965).
- [7] T. Takeda et al., J. Phys. Soc. Jpn. 33, 967 (1972).
- [8] M. Takano et al., Mater. Res. Bull. 12, 923 (1977).
- [9] A. E. Bocquet et al., Phys. Rev. B (to be published).
- [10] H. Adachi and M. Takano, J. Solid State Chem. 93, 556 (1991).
- [11] P. K. Gallagher *et al.*, J. Chem. Phys. **41**, 2429 (1964);
 M. Takano *et al.*, J. Solid State Chem. **39**, 75 (1981).
 See a review, M. Takano and Y. Takeda, Bull. Inst. Chem. Res., Kyoto Univ. **61**, 406 (1983).
- [12] H. Adachi and M. Takano (unpublished).
- [13] S. Nasu et al., Hyperfine Interact. (to be published).
- [14] Y. Takeda et al., Mater. Res. Bull. 13, 61 (1978).
- [15] R. Ingalls, A. Van der Woude, and G. A. Sawatzky, in *Mössbauer Isomer Shifts*, edited by G. K. Shenoy and F. E. Wagner (North-Holland, Amsterdam, 1978), Chap. 7.
- [16] J. B. Goodenough, Prog. Solid State Chem. 5, 145 (1971); T. C. Gibb *et al.*, J. Solid State Chem. 11, 17 (1974).