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Can the Lennard-Jones Solid be Expected to be fcc?
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The structure of the Lennard-Jones solid, obtained by molecular-dynamics simulation of crystalliza-
tion in the supercooled liquid, may be fcc, although the hcp structure is energetically more favorable.
This could derive from the cubic symmetry of the fcc lattice, allowing lattice defects that are not possible
in the hcp arrangement, but are essential to crystal growth in the simulated liquid. Two crossing stack-
ing faults in a small fcc crystallite can produce nonvanishing, growth-promoting, but stacking-fault-

resisting, surface steps.

PACS numbers: 61.20.Ja, 36.40.+d, 61.50.Cj

It is well known that the Lennard-Jones (LJ) potential
favors the hcp structure over the fcc structure for the
solid [1]. The difference in cohesive energy (= 0.01%)
appears to be too small, however, to provide a basis for an
explanation of an observed preference for one of the two
structures in molecular-dynamics (MD) simulations of
crystallization in the supercooled LJ liquid. In fact, until
very recently, such a preference has never been found
[2-7]1, suggesting the inadequacy of the LJ potential to
model the interatomic interactions in a simulation of ei-
ther fcc or hep crystal growth.

It is the purpose of this Letter to investigate the role
that lattice defects may play in the simulated crystalliza-
tion process, and, in particular, to demonstrate that
growth-stimulating defects are much more probable to
occur in fcc crystallites than in hcp crystallites. More-
over, it will be shown that such defects exclusively stimu-
late fcc growth, without further assumptions regarding
the interatomic potential other than that it is isotropic
and short ranged.

That growth characteristics can be decisive in the
choice of crystal structure of a substance, rather than a
difference in cohesive energy, can be illustrated by a com-
parison with the method of static lattice energy calcula-
tions, aimed at structure prediction. Here, the evaluation
and subsequent minimization of lattice sums involves in-
clusion of all interactions between a representative cen-
tral atom (the reference atom) with all its close and more
distant neighbors within a limiting sphere. However, the
reference atom has been incorporated in the crystal lat-
tice under completely different conditions, notably in the
absence of at least half of its ultimate neighbors. More-
over, according to accepted theories of crystal growth [8],
the motions of surface-migrating atoms are governed by
short-range forces and are rather insensitive to the de-
tailed shape of the potential. Trapping sites that are (al-
most) equally favorable (but, possibly, not equivalent, as
on close-packed faces of fcc or hcp crystals) will have
equal a priori occupation probability. The possibility of
complete layers of atoms shifting to ‘““better” positions in
response to the arrival of new neighbors can be ruled out.

Both the fcc and the hcp structures consist of plane
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hexagonal arrays of atoms that are stacked in an orderly
way, with atoms in one layer over three-coordinated sites
in the preceding layer. Consequently, each layer is paral-
lel shifted with respect to the preceding layer by one of
the six vectors r; joining a particular atom with the
three-coordinated sites surrounding it in its layer. The
structure is fcc if each layer is shifted by the same vector
r with respect to the preceding one, and hcp if the shifts
are alternating r,—r,r,.... Apparently, in the latter
case the odd layers are all in the same position, as are the
even layers, and the stacking sequence is referred to as
...ABABAB. . .. Similarly, fcc stacking is characterized
by the sequence ...4ABCABC. . ., since the shifts 3r and
Or are equivalent. Omitting a layer from the fcc se-
quence introduces a shift 2r, equivalent to —r.

Since the fcc arrangement has cubic symmetry, there
are four different, but equivalent, stacking directions,
along the body diagonals of the cubic unit cell; the hexag-
onal symmetry of the hcp lattice, on the other hand, al-
lows only a single stacking direction. A small fcc crystal
may be completely bounded by close-packed faces, as is
the case, for example, when it is in the shape of a
tetrahedron or an octahedron. The hcp crystal must ex-
hibit other low-index faces as well.

There are two problems connected with the growth of
an fcc crystal: (i) The close-packed faces do not offer
favorable sites for surface nucleation, necessary to start a
new layer, which practically excludes further growth un-
der near-equilibrium conditions; and (ii) if surface nu-
cleation did occur somehow, it could be easily in the
wrong registry, e.g., B when the supporting layer is C and
the new layer should be 4 to comply with the fcc se-
quence. Indeed, with a Lennard-Jones potential, the
chances for “right” and “wrong” would be virtually
equal. Both problems can be solved by introducing ap-
propriate, but plausible, lattice defects, and considering
their effects on growth modes, growth rates, and crystal
symmetry.

If a close-packed face is only partly covered by a new
layer, there will be a monatomic (full) step on the sur-
face, and new atoms will be trapped in favorable five- and
six-coordinated step and kink sites. Unfortunately, this
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process of accretion advances the step towards the end of
the crystal, where it is annihilated, leaving a situation
that is unfavorable for further growth. As was pointed
out by Frank [9], this problem can be solved by observing
the effect of a screw dislocation emerging from the sur-
face. The dislocation has associated with it a full step
that cannot run out of the crystal, but rather rotates, by
accretion of atoms, about the intersection of the disloca-
tion with the surface. The permanent availability of ac-
tive surface sites clearly removes the growth-inhibiting
difficulty of surface nucleation. However, since the origin
of screw dislocations is believed to be in the inclusion of
impurities in the crystal lattice, their role in computer
simulations of the LJ liquid may be insignificant.

A simple stacking fault, on the other hand, is a very
common defect in computer-generated structures, as is
obvious in the frequently reported fcc/hcp mixtures
[2-6]. Rather than a full step, the intersection of a
stacking fault with a surface not parallel to it produces a
half step (or, more generally, a nonintegral step) that
cannot run out of the crystal either. This is illustrated
schematically in Figs. 1(a)-1(d), where the effect of a
single stacking fault in one of the three stacking direc-
tions not perpendicular to the (111) surface of an fcc
crystal is considered. The steps provide the surface with
rows of four-coordinated sites that would exhibit only
three-coordinated sites otherwise. Consequently, the need
for surface nucleation is not completely removed, but the
resistance to island formation may be substantially re-
duced. It remains to be demonstrated that the steps help
to initiate new layers in the correct fcc registry (4BC).

It is clear that the surface will be atomically flat (or
can be made so by removing unfinished layers) if none of
the three sets of close-packed layers that are inclined to
the surface contains a stacking fault. Or, stated dif-
ferently, the flatness of the surface guarantees the ab-
sence of a stacking fault in all three sets. Consequently,
stacking faults can be avoided if the edge atoms of suc-
cessive layers are forced to form a flat face. The situation
depicted in Fig. 1(d) [which is identical to that of Fig.
1(b)] may be considered to represent a translation twin,
in which both individuals had an atomically flat outer
surface [parallel to the removed layer B, Fig. 1(a)] before
they were joined. The misfit produces a step, which is an
extension of either the “left” or the “right” surface. The
individuals grow in turn, as they are on the lower side of
the step, by accretion of a single layer on the free surface.
The nucleation at the step guarantees the closing of the
new layer to the step and, consequently, the extension of
the flat interface between the twin individuals, implying
correct stacking, as explained above. For example, in
Fig. 1(d) the lower side of the § step stimulates the nu-
cleation of a C layer (and not a B layer, as is also ap-
parent from the situation a few layers below the surface),
that spreads to the right, simultaneously creating a %
step to the left. The detailed atomic arrangements near
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FIG. 1. (a)-(d) Origin of nonintegral surface steps in fcc
crystals. The view is along the [110] direction, i.c., along the
lines of intersection of two sets of crossing close-packed layers.
(a),(b) A hcp stacking fault CACA may be viewed as resulting
from the removal of a single B layer from a perfect crystal. The
gap can be closed by pushing both crystal fragments together in
the direction of the arrows, in order to make the facing 4 and C
layers fit; the step height is +di1. (c),(d) Same situation as
(a),(b), but with emphasis on close-packed layers parallel to the
surface. (e),(f) Comparison with hcp. (e) As (b), but with all
B layers removed: hcp. The stepped surface is a (1011) face
(with no stacking ambiguity as on close-packed faces). An ex-
tra step would not influence the growth on this face sig-
nificantly. (f) A nonintegral surface step on a (0001) close-
packed face of a hcp crystal is not possible.

~
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surface steps are shown in Fig. 2. Since each new layer is
shifted by the same vector relative to the supporting lay-
er, an ABCABC, rather than an ABABAB, sequence re-
sults.

The single stacking direction in hcp crystals excludes a
stacking fault in another direction and, consequently, a
nonintegral step on a close-packed surface is not possible
[Figs. 1(e) and 1(f)]. Even if it were possible, the result
would be layer deposition in ABC stacking order, i.c., a
conversion to fcc growth.

Isotropic fcc growth would require nonvanishing steps
on all slow-growing faces, a condition easily met in an fcc
crystal by introducing two crossing stacking faults. For
example, in an octahedral crystal, one stacking fault,
parallel to two faces, produces steps on the remaining six
faces, and the second fault, parallel to one of these six
faces, cuts the faces parallel to the first fault (cf. Fig. 3).
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FIG. 2. Side and top views of atomic arrangement in the fcc
(111) face with different kinds of steps. All accessible sites
have three coordination, except as indicated for the sites
marked in black. (a) Full step, five coordination; the layer will
spread to the right, leaving an atomically flat surface. (b) %
step, four coordination; situation as in Fig. 1(d); if the marked
sites are occupied first, a layer will spread to the right, to give
(c) % step, four coordination; if the marked sites are occupied
first, a layer will spread to the left, leaving a situation as in (b),
but parallel shifted by r= ¢ a{211). The surface structures (b)
and (c) can be recognized on the doubly faulted octahedron
shown in Fig. 3.

A vacancy channel, surrounded by atoms with eleven,
rather than twelve, neighbors at the line of intersection of
the two faults causes a small loss in binding energy [10].

The smallest close-packed structure with two crossing
stacking faults should contain some twenty atoms, and is
not more or less likely to result from spontaneous
structural fluctuations in the supercooled liquid than are
perfect fcc nuclei. In contrast with a perfect nucleus,
however, the permanent availability of active four-
coordinated sites (that cannot be exhausted by occupa-
tion) on the surface of the faulted structure will make it
fast growing, increasing its chances to leave the subcriti-
cal size region before disintegration (cf. Fig. 4).

The, supposedly indispensable, stacking faults in small
crystallites may cause rather drastic changes in observ-
able diffraction functions. as illustrated in Fig. 3, where
the interference functions S(k)=2X(sinkr;;)/kr; (sum-
mation over atom pairs i,j) of some small clusters of
equal size are compared. The interference function of a
faulted 146-atom fcc octahedral crystallite is significantly
different from that of the perfect crystal, but similar to
that of a three-shell 147-atom icosahedron, exhibiting
fivefold symmetry. Growth based on icosahedral motives
is believed to be a dominant feature in (rare) gas-phase
nucleation in supersonic molecular beams [11-13].

The proposed qualitative scenario of crystal nucleation
and growth unequivocally favors the fcc structure for the
LJ crystal, to the extent that, if a nearly perfect crystal
could be produced by an MD simulation of the super-
cooled LJ liquid, it is most likely fcc. The recently re-
ported results of a simulation of a 10%-atom liquid [14]
are strongly in support of this view: It was found that
originally defective hcp/fcc nucleation eventually result-
ed, after annealing, in nearly perfect fcc crystallites with
some unidentified dislocations, including “planes of parti-
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FIG. 3. Interference functions S(k) at zero temperature for
(from top to bottom) perfect fcc octahedron, fcc octahedron
with two crossing stacking faults, and three-shell icosahedron.
Reduced units, ie., k=2"°c(47/1)sin(6/2); peak positions
would be at k2=2x2(H2+ K2+ L?) for an infinite fcc crystal.

cles that do not line up with themselves” [cf. Fig. 1(d)].
Apparently, hcep stacking faults are unavoidable; presum-
ably they are essential.

The foregoing discussion also suggests that conditions
should be such that adsorbed atoms can stick only in sites
that are at least four coordinated, but evaporate from
three-coordinated sites [cf. exp(1/7*) =7, at a reduced
temperature 7* =0.5]. If not, there is no reason to ex-
pect the concentration of stacking faults to remain small,
since then island formation in correct or incorrect registry
would be equally probable. This condition would make
growth of a perfect crystal virtually impossible, according
to classical theories of growth. The same condition, how-
ever, hampers homogeneous nucleation and is liable to
make the occurrence of a doubly faulted nucleus a rare
event. This may be one of the reasons why a successful
simulation requires some 10° atoms; it simultaneously
suggests the possibility of an experimental verification of
the proposed mechanism: The LJ liquid may be “seeded”

FIG. 4. Two views of a possible nucleus, supporting fcc
growth. The 22-atom cluster consists of two incomplete 11-
atom hcp anticuboctahedra (distinguished by shading). Its sur-
face exposes three- as well as four-coordinated sites. If only the
latter are occupied by new atoms, the cluster will grow into a
nearly perfect fcc crystal, with not more than two (crossing)
stacking faults. The four-coordinated sites cannot be exhaust-
ed, as occurs with a perfect fcc nucleus.
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(e.g., by constraining the configuration of a group of
atoms in the liquid to remain unchanged) with perfect fcc
or hcp nuclei of approximately critical size, or alterna-
tively with a defect structure like the one shown in Fig. 4.
It should then be expected that the defect structure will
initiate isotropic fcc growth, but that the perfect nuclei
either remain unchanged or develop into disordered
fcc/hep mixtures.
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