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The experimental study of a linear array of vortices shows the existence of spatially modulated states
of oscillation above onset. A model of coupled oscillators is proposed, and the measurements of the cor-
responding first- and second-neighbor couplings show that these regimes are the result of frustration.
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These last years, several experimental studies of spa-
tiotemporal chaos have been performed on extended sys-
tems whose dynamics evolves in a one-dimensional space.
Such systems display a very rich dynamical behavior,
and, because of their low dimensionality, they remain ac-
cessible to theoretical modeling. It has thus been possible
to interpret chaotic regimes, such as spatiotemporal inter-
mittency [1], dispersive chaos [2], and various phenome-
na, such as parity breaking [3], within the framework of
one-dimensional amplitude equations. Because of their
reasonable complexity, one can hope that one-dimen-
sional systems are good candidates for investigating new
routes to weak turbulence. In this Letter, we consider
a particular system of this type —a line of vortices—and we report, for the first time, the observation of
frustrated states. Frustrated states have been studied for
many years in other contexts, such as spin glasses, but, to
the best of our knowledge, their existence has never been
reported in hydrodynamic systems.

The experimental system that we use is similar to that
described in a recent Letter [4]. The cell, made of polyvi-
nylchloride (PVC), is 450 mm long, 40 mm wide, and 50
mm high. In the bottom of the cell, a groove 300 mm

long, 20 mm wide, and 3 mm deep is machined. Outside
the cell, and jgst below the groove, a line of alternating
magnets, 5x8 & 3 mm in dimension, is formed. Each in-
dividual magnet produces a maximum magnetic 'field of
0.3 T. The cell is filled with a normal solution of sulfuric
acid, at a level corresponding to the depth of the groove
so as to suppress the meniscus along the boundary of the
lattice. We impose a steady electric current along the
cell, and the resulting magnetic forces, which are spatial-
ly periodic, induce recirculating flows; we thus obtain a
linear array of counterrotating vortices, 5 mm wide and
20 mm long, whose number can be varied from a pair to
36.

Various conditions at the extremities of the lattice have
been considered. Most of the results presented herein
have been obtained by incorporating additional smaller
magnets at the ends of the magnetic line; by doing this,
we induce weak recirculating flows at the extremities of
the lattice, which in turn force the end vortices' centers to
fall, on average, close to the lattice axis. Reducing lattice
distortions at the extremities turned out to be crucial for
performing dynamical measurements on small systems.

As shown in previous studies [4,5], as the electric
current is increased, the system undergoes a transition
from a state composed of counterrotating vortices to a
state where all the vortices have the same sign and are 2
times larger (the latter state is called "state +"). This
state will be further subjected to temporal instabilities.
We use the shadowgraph method to visualize the separa-
trices between the vortices, and thus follow the spatiotem-
poral dynamics of the system (see Fig. 1, which repre-
sents the shadowgraph image of a system of fifteen coro-
tating vortices). For the measurements, the shadowgraph
images are digitized and the positions of the separatrices
are determined by tracking, in real time, the maxima of
the light intensity along the lattice axis. The resulting
signal-to-noise ratio is about 40 dB.

In the case of four magnets, state + is a single pair of
steady corotating vortices, and the bifurcation to the
monoperiodic regime appears at I = 15 mA. As in previ-
ous studies [4,5], we observe that the bifurcation is super-
critical, and the corresponding Hopf oscillator is stable
within a large range of variation of I above threshold.
For the case of six magnets, state + is composed of three
corotating vortices, and the system sustains two Hopf os-
cillators. The bifurcation to the oscillatory regime ap-
pears at I =13 mA and above onset, the two oscillators
have the same amplitude and are in phase, so that the
collective oscillation of this small system has the form of

FIG. l. Shadowgraph image of the free surface of the flow
for a system of fifteen corotating vortices, for 1=15 mA (only a
part of the lattice is shown).
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FIG. 3. Direct time recordings of the positions of eight
separatrices in the central part of a system of fifteen oscillators,
for I = l4 mA.
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FI'G. 2. Spatial structures of the amplitudes a of oscillation
of the separatrices, close to the onset, for systems of small sizes.
n is the position of the separatrix along the lattice. The ampli-
tude is taken positive when the temporal phase is close to zero,
and negative when it is close to 180' (here, the reference of
phase is the first oscillator). The corresponding values of the
current are (a) 1=15.73 mA (for N=2), (b) 1=13.95 mA (for
N=3), and (c) 1=13 mA (for N=4) The full lines are .calcu-
lated using Eq. (1).

an acoustical mode [see Fig. 2(a)]. A retnarkable struc-
ture of the oscillatory regime appears for the case of eight
magnets, i.e., three oscillators. In this case, close to the
onset of oscillation, the two extreme oscillators have the
same amplitude and are out of phase by 180, whereas
the central oscillator is damped [see Fig. 2(b)]. This
defines a mode of oscillation of wave number k =+/2,
which turns out to be stable over a large range of values
of I above onset. Thus in this elementary system, one ob-
serves, as the first mode of instability, a spatially modu-
lated state. The case N=4 shows a similar feature [see
Fig. 2(c)].

In general, deep modulations of amplitude are observed
in lattices of larger sizes. This feature is clearly visible on
the typical direct time recording of a large lattice (see
Fig. 3). Figure 4 shows corresponding plots of the ampli-
tudes and phase along the lattice for systems of eight and
fifteen oscillators. %e have "domains, " which are sep-
arated by deep minima of amplitude [see Figs. 4(a) and
4(c)], moreover, one or two waves, with wave numbers ly-

ing in the range 80 -120, propagate along the lattice
[see Figs. 4(b) and 4(d)]. Depending on the initial condi-
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FIG. 4. Typical evolutions of the amplitudes and phases with

the position of the separatrices, for systems of large sizes.
(a), (b) N=8, 1=16.04 mA; (c),(d) JV =15, 1=18.03 mA (in
the latter case, only a part of the system is shown). The full

lines are drawn to guide the eye.

tions, one can have either two counterpropagating waves
propagating from the ends towards a sink [see Fig. 4(b)]
or a single wave along the lattice [see Fig. 4(d)]. The
wave number of such waves increases with I, from
80 ~ 10 per unit of oscillator at threshold up to
135 ~ 20 at the onset of the chaotic regime, indicating
the probable existence of a selection process. As shown in

Figs. 4(a) and 4(c), the sizes of the domains are not
regular —they range from two to four oscillators —and
their positions also depend, in an uncontrolled way, on the
history of the system. As a general tendency, the domain
sizes, on average, decrease as the current increases. The
spatially modulated regime becomes chaotic as I is in-
creased above 20 mA. In our system, spatiotemporal
chaos can be crudely characterized by the fact that the
boundaries of th~ domains evolve erratically in space.

Owing t~ 'h~ geometry of our experiment, and to the
fact that one can define an oscillator for an isolated pair
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of vortices, it is tempting to view our system as a chain of coupled oscillators. As in a previous study [4l, each element
of the chain is a supercritical Hopf oscillator, coupled linearly and nonlinearly to its first neighbor. However, we intro-
duce now a second-neighbor coupling, which we assume, for simplicity, to be linear. We then get the following system
of equations:

aW„= p(1+ico) W„—(I +ic2) W„IW„I +e(1+ic~ )(W„—~+ W„+~)

—(c3+ic4)W„(IWn iI + IWn+iI )+s'(I+i'c! )(Wn 2+—Wn+&)

Here, 8'„is the complex amplitude of the nth oscillator,
p is the control parameter, and cp, c~, c2, c3, c4, c~, ~, and
e' are real numbers.

The linear modes of instability of the chain are travel-
ing waves in the form 8 „=8'pe'"'+ " . When e' is posi-
tive, the critical modes are either acoustical (for e posi-
tive) or optical (for s negative), as in the case s'=0. An
interesting situation arises when the second-neighbor-
coupling coefficient e' is negative: In this case, first-
neighbor coupling favors each oscillator being in phase
with its second neighbor, whereas second-neighbor cou-
pling favors a phase shift of 180 between them. In our
problem, as in magnetic systems, this competition gen-
erates frustration if Is'/sI is larger than a critical value,
which is found to equal 4 for infinite lattices. When this
condition is satisfied, the critical mode is neither acousti-
cal nor optical, but a traveling wave with a well-defined
wave number kp given by the relation

coskp = 8/48 . (2)

Indeed, for finite lattices with reflecting boundary con-
ditions, linear theory predicts a standing wave at onset; in
this case, the scale ko =x/ko represents a typical distance
between two successive nodes. It is interesting to note
that condition (2) is formally identical to that character-
izing the onset of helimagnetic structures in models in-
cluding only first- and second-neighbor coupling [6].

In order to make a quantitative comparison between
this model and our experiment, we proceed to the mea-
surement of all the coefficients involved in Eq. (1). Let N
be the number of oscillators, the separatrices are labeled
from 1 to N, and 8'„is related to the temporal behavior
of the nth separatrix. The coefficients cp, c~, c2, c3 c4 6,
and p =(I I, )/I, (where —I, .is the critical value of the
electric current for N=1) are determined by investigat-
ing threshold values and critical properties in systems
composed of one and two oscillators. We thus obtain the
following values: I,. = 15 mA, cp= —0.11, c~ =0.22,
c2= —1.34, c3=3, c4=0.046, and a=0.23. For the
second-neighbor-coupling coe5cients c~ and s' we consid-
er the case N =3, for which, as shown in the experiment,
the excited wave number is x/2. Using this value, we
determine the theoretical values of the electric current
and the frequency at onset (obtained under the condition
that there is no oscillation outside the lattice). We fur-
ther compare them to the experimental values, and thus
obtain c~ =0.22 and s'= —0.23. According to this, e' is
negative, the ratio Is'/s! is larger than 1, and therefore we
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FIG. 5. Numerical results showing typical evolutions of the
amplitudes and phases along a chain of oscillators, for systems
of large sizes. (a), (b) N =g, p = —0.05; (c),(d) N = l 5,
p = —0.2 (in the latter case, only a part of the system is
shown). The full lines are drawn to guide the eye.

! are eff'ectively in a frustrated situation. The wave num-
ber determined by relation (2) is found to equal 76' (per
oscillator), so that A.o = 2.4.

Once all the coefficients of Eq. (1) are determined, we
perform a numerical simulation of system (1) by using a
fourth-order Runge-Kutta method. For the boundary
conditions, we assume no oscillation outside the lattice.
The results obtained for various system sizes are shown in

Figs. 2 and 5. As expected, close to the onset, the states
of oscillation of the experiment is well reproduced by the
numerical simulation: We successively obtain the acoust-
ical mode for N =2 and the antisymmetric ones for N =3
and 4 (see the full lines in Fig. 2). For large systems, we
find that the oscillation amplitude is modulated in space,
with domains of typically two or more oscillators; this is
the typical form of the frustrated states for our system.
Actually, in the simulation, as p is varied, one gets two
distinct modulated structures: Close to the onset
p, = —0.45, the states of oscillation have a spatial sym-
metry (symmetric or antisymmetric according to the par-
ity of the number of oscillators), then, for values of p
above pl = —0.23, the states of oscillation are asym-
metric. Figure 5 shows the results of the numerical study
for N=8 and 15, for values of p close to those of Fig. 4,
i.e. , p = —0.05 and —0.2 (for smaller values of p, the
signal was within the experimental noise). In both cases
we obtain asymmetric states with deep modulations of
amplitude, and domains of two or more oscillators [see
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Figs. 5(a) and 5(c)]. Concerning the phase, typical re-
sults of the simulation are shown in Figs. 5(b) and 5(d).
For such plots, as in the experiment, we smooth out the
curve by adding multiples of 360' (this procedure may be
somewhat artificial when the jump between two oscilla-
tors is close to 180'). Depending on the initial condi-
tions, we obtain either a counterpropagative wave [see
Fig. 5(b)] or a single traveling wave [see Fig. 5(d)].
These features are in good agreement with the observa-
tions. Moreover, such waves are characterized by a wave
number ko equal to 76' at threshold, which increase up
to 120' just before the chaotic state; such values are con-
sistent with those obtained experimentally. Finally, in

large systems, one gets spatiotemporal chaos as p is in-
creased. The qualitative features of this weakly turbulent
regime also show similarities with the experiment; in

short, it consists of the erratic wandering of nodes along
the lattice.

In conclusion, we get good agreement between the frus-
trated model (1) and experiment for small and large sys-
tems, showing that the structure of the oscillatory states
observed in the experiment is the result of a frustration.
The observation of frustrated states has not been reported
previously in hydrodynamics [7], but one can mention
that succession of nodes and antinodes has also been ob-
served, close to the onset, in a linear array of trapped
convective rolls [8]. As for our system, they may be the
remnants of a frustration and this suggests that this type
of eA'ect may have some general relevance in discrete sys-
tems.
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