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Harmonic Gyroresonance of Electrons in Combined Helical Wiggler and
Axial Guide Magnetic Fields

K. R. Chu
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

A. T. Lin
Department of Physics, University of California, Los AngelesC, alifornia 90024

(Received 28 August 1991)

A driven-oscillator model is developed to examine the orbital-velocity harmonics of off-axis electrons
in combined helical wiggler and axial guide magnetic fields. The gyroresonance effect is found to occur
at harmonics of the wiggler frequency in addition to the well-known fundamental-harmonic resonance.
Resonance at the first negative harmonic is potentially important for providing an explanation of the
unexpected observations of a recent free-electron-laser experiment. Exploration of the gyroresonance
effect as a harmonic selection mechanism for the free-electron laser is discussed.

PACS numbers: 42.55.Tb

y=(1 —v /c v~f/c ) —collst, (2)

and B~~ includes the uniform guide field Boe, . Substitut-
ing the relation v& =k„virt, into Eq. (1) to eliminate rt,
gives the familiar equation derived by Friedland [1] and
others [2-5],

t J + J t II/(kw V ll (3)

where 0& i =eB& /yam, c and k„=2tt/X„. Equations (2)
and (3) together yield multiple solutions for v& and vi,
corresponding to different classes of equilibrium orbits
[1,4]. Equation (3) predicts a wiggler and guide field res-
onance (gyroresonance) at

k~v )[ 0))—0, (4)
which separates the electron orbits into two groups, com-

The free-electron laser (FEL) often employs an axial
magnetic field to guide the electron beam through the
wiggler. The guide field also plays an important role in

the wiggle motion of the electrons and through which
influences the gain, frequency, and e%ciency. It is in fact
an integral part of the physical process taking place in
FEL's with a guide field. Electron dynamics in combined
helical wiggler and axial guide fields have been studied in

ideal (one-dimensional) [1-3] and realistic (three-di-
mensional) [3-5] wigglers. In the siinplest case, the elec-
tron performs a steady-state axis-centered helical orbit
with constant axial and transverse velocities. With the
pitch distance equal to the wiggler period k„, the electron
rotation can be synchronized with the wiggler field such
that on its orbit there are constant azimuthal and axial
magnetic fields (B&,Bi) but no radial magnetic field.
Also, the electron velocity has only azimuthal and axial
components (v~, vi). Thus the magnetic force on the
electron is radially directed which balances the centrifu-
gal force to result in an equilibrium state given by

ymev g/fp (e/c) (v iB~+v~8((),

where rb is the electron orbital radius,

monly referred to as group I (kivi & Qi) and group II
(k II V ll ) + II ) ~

The simple equilibrium model just discussed is only a
very special case. Any departure from it, such as a per-
turbation of the electron velocity or a radial displacement
of the electron guiding center, can result in complicated
orbital behavior. This has led to detailed theories which
shed light on the electron betatron oscillation [4,5],
guiding-center drift [5,6], stability of [1-4] and accessi-
bility to [1,3] the equilibrium orbit, etc. Numerical cal-
culations generally show that the electrons execute non-
steady-state helical orbits, with their v& and v~~ oscillating
about mean values [. & and V~I. For experimental studies
of the FEL [7-11], it is of practical importance to have
an accurate method of predicting 6 & and F~~ in order to
determine the FEL gain and frequency. Thus different
schemes of approximating the 0& and 0

~~
terms in Eq.

(3) (and hence 6& ) have been developed, as has been ex-
tensively discussed by Fajans, Kirkpatrick, and Bekefi
[5].

Elaborate experimental investigations [8,10,11] of
beam behavior near the gyroresonance have shown good
agreement with theoretical predictions. A beam injected
under the resonance condition (4) is found to be totally
disrupted in the wiggler field [8,11]. In a recent Ka-band
FEL amplifier experiment by Conde and Bekefi [11],the
magnetic field is reversed from its usual (positive z)
direction and this results in a dramatic increase in in-
teraction efficiency (from 2% to 27%). When the re-
versed magnetic field is tuned to the value ~Qi) =k„vt,
where no resonance is predicted, there is a large, unex-
pected dip in output power although most of the beam()90%) has passed through the wiggler. This peculiari-
ty suggests the need for further examination of the elec-
tron behavior in the wiggler, especially in the reversed
field configuration.

Motivated by these observations, the present paper de-
velops an approximate model to examine the wiggle
motion of the off-axis electrons. ON'-axis electron motion
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is not amenable to exact analysis. It has been studied numerically [5,6,8] or by some averaging method [4,5]. In these
treatments, the harmonic aspect of the electron motion has been either obscured or averaged out. Here, we shall focus
on the harmonic content of the electron motion, but ignore the other complexities discussed earlier. In our model, the
magnetic forces on an off-axis electron are evaluated on an ideal helical orbit, as is projected in the cross-sectional plane
in Fig. 1 (validity discussed later). The wiggler plus guide field is expressed in cylindrical coordinates (r, 0,z) by [3]

B=Bpe, +28 [1[(k„r)cos(0—k z)e, —[I~(k„r)/k„r]sin(0 —k z)etc+I~(k r)sin(0 —k„z)e,], (5)

where I„ is the modified Bessel function of the first kind and I„ its derivative. In I'ig. 1, the electron phase angle is
chosen so that in the limit rg 0, the orbit reduces to the exact steady-state orbit.

The transverse force exerted on the electron by the transverse components of the wiggler field can be approximately
written

F~ = —(e/c)vie, x [II(k„r)cos(0—k„z)e„—[I~(k r)/k r]sin(0 —k z)eoj, (6)

where F~~ is the average axial velocity of the electron.
Transverse orbital motion of an off-axis electron allows it to traverse the wiggler field over a radial distance of up to

2rb (Fig. 1). Hence, the spatial gradient of the wiggler field results in a magnetic force on the electron composed of har-
monics of the wiggler frequency k„v~[. Applying the Bessel function addition theorem to eliminate the oscillatory vari-
ables r and 0 in favor of rb, r~ and phase angle k z, we rewrite Eq. (6) as

F = " g I(kr)eB„vi 2(q+1)
I~+~(k rb)cos(qk z)e~+Iq+2(kerb)sin(qk z)e~

c q
= —oc kwrb

Bi =Bp+28 g I„+~(k„rb)I„(k rg)cos(nk„z), (10)

where e~ and e~ are unit vectors perpendicular and
tangential to the circular orbit, respectively (see Fig. 1). ly expressed,
Transforming to the Cartesian coordinates and rearrang-
ing terms, we obtain

2eB„vi
C n= —~ kw b

I„(k„rb)I, ~(k rs)e„,r

where

e„

e„—=sin (nk„z )e —cos (nk z )e~

=sin (nk Fi t )e„—cos (nk„v
~~
t )e~,

and e„rotates in the same (opposite) sense as the wiggler
field for positive (negative) n

The total axial field on the helical orbit can be similar-

and its average is simply

8~) =Bp+28 I )(k rb)Ip(k r~) .

We may now write the equation of motion for the
transverse electron velocity in the average axial magnetic
field:

dvg = —Q]~v& xe,
dt

+2&~i i g I„(k rb)I„~(k„rg)e„, (12)
n ——— kwrb

where Qt~= eBi/ym, c, 0„=eB„—/ym, c, and th—e time vari-
able t (=z/Fi) is used. This is the equation of motion of
a driven oscillator, with A]~ being the natural frequency.
The solution is

e v~ = v~p[ co(s& timp)e +sin(&i~t+pp)ef]

&'Zncz Xen ~ (13)

where

=e

FIG. 1. Projection of the helical orbit on the transverse plane
on which the magnetic forces on the electron are evaluated.

2nQ F]~
&'Xn = I„(k„rb)I„~(k„rg) . (14)

k rb(nk„~ i
—&i)

The first term on the right-hand side of Eq. (13) is a
general solution representing the cyclotron oscillation. Its
amplitude v~0 and phase po depend on the entrance con-
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ditions of the electron. It can become significant under
nonadiabatic entrance conditions. For the present pur-
pose, it will not be discussed further. The second term
comprises oscillations at the harmonics of k„F~] driven by
the wiggler field. In the case of axis-centered motion
(rg =0), all but the n =1 term vanish and we recover the
steady-state solution discussed earlier. The n =1 term
will henceforth be termed the fundamental harmonic and
the n~l terms (including the n = —

1 term) higher har-
monics. For the off-axis electrons (rg &0), however, v&
is a rich composition of positive (n &0) and negative
(n & 0) harmonics. It is interesting to note that the fun-
damental-harmonic term

2Q~v[)
Vg] 1, (k„rb)lo(k r, )

k rb(k vg OII)
(15)

is precisely the semiempirical equation obtained by Fa-
jans, Kirkpatrick, and Bekefi [Eq. (18) of Ref. [5]].The
averaging procedure of Ref. [5] has suppressed the
higher-harmonic components of Eq. (13). These harmon-
ic contributions, of the order of (k„rg ) " ' when

k r~ ( 1, are negligible in the absence of harmonic reso-
nances, since k rg ((1 under realistic experimental condi-
tions. Indeed, Eq. (15) is found to be in good agreement
with computer simulations as well as experimental obser-
vations over the full range of rg of practical interest
(k„rg & 1) [5]. However, when there is a harmonic reso-
nance

nk„btt —)t =0 (16)

the resonant component v&„ is no longer a small term.
The larger rg is, the larger the v&, term. Electrons on
the outer edge of the beam may thus obtain a suAiciently
large v&„ to be intercepted by the wall. This qualitatively
explains the small but noticeable dip in beam current ob-
served by Conde and Bekefi [11] in the reversed magnetic
field (Di & 0) satisfying resonant condition (16) with
n = —l. Under the same condition, the oA-axis electrons,
though mostly transported through the wiggler, have all
acquired a harmonic (n = —1) quiver velocity of varying
magnitude depending on their guiding-center positions,
which amounts to a cross-sectional velocity spread and
hence explains the large dip in the observed output power.

In our model, the evaluation of magnetic forces has
been based on the assumption that the electrons stay near
an ideal helical orbit. The validity of this assumption re-
quires

1 tlt' zn
orb g « I,

t'xn rbg, (17)

where hrI, and br~ are deviations from the helical orbit.
Substituting Eq. (14) into Eq. (17), we obtain

I n I ~I"blr b && 1, ( n —
1 ) &~glrg && I,

where only the first term of the modified Bessel function
has been retained because of its small argument. Condi-
tion (18) is generally lenient for low harmonics, but be-

comes progressively restrictive as the harmonic number
increases.

From the analytical point of view, the present model
depicts a much simplified picture of the electron behavior
in the wiggler plus guide field. It nevertheless serves the
purpose of a focused look at a new physical eAect which
appears to have clarified an unexpected aspect of the
M IT experimental results [11]. Perhaps more significant-

ly, the gyroresonance eA'ect also suggests a potentially
promising harmonic FEL scheme as discussed below.

Radiation generation at the harmonic frequencies has
often been limited by problems of mode competition,
insufficient gain, low efficiency, etc. , which get worse with

increased harmonic number. Thus, harmonic FEL opera-
tion generally requires a mechanism that selectively
enhances the competitiveness of a desired harmonic.
Methods for mode or harmonic selection include resona-
tor tuning [12], magnetic-field tapering [13],signal injec-
tion [14], mode-orbit differential efficiency [15], periodic
positioning interaction [16], harmonic wiggler field com-
ponents [17],orbital harmonic enhancement by the focus-

ing magnet [18], etc. In the present case, the axial guide
field could conceivably be explored as a harmonic selec-
tion mechanism. With the guide field tuned near to the
nth wiggler harmonic (O~~=nk i~i), Eq. (14) shows that
the fundamental-harmonic component of the quiver ve-

locity will be reduced by a factor approximately equal to
n, whereas its nth-harmonic component is resonantly
enhanced. The harmonic quiver velocity corresponds to
an effective wiggler period of X /n. Consider a 700-kV
electron beam in a wiggler with k =3 cm as an example,
a guide field of —38 kG will be suAicient to reach the
fifth wiggler harmonic. The appropriate beam source for
such an application is preferably annular in shape with a
reasonably large radius (rg). So, upon resonant action in

the wiggler region, the electrons will acquire a substantial
harmonic quiver velocity with a minimum cross-sectional
velocity spread. On the other hand, there are factors that
are expected to smear out the harmonic resonance. Be-
cause of its finite orbital radius (rb), an off-axis electron
does not stay in a constant axial field [see Eq. (10)]. Fur-
ther, there will be space-charge force and orbital oscilla-
tions of one kind or another, giving rise to an eA'ective

spread in real and velocity spaces. All these subtle details
have not been incorporated in the present model. To fur-
ther assess the feasibility and limitations of this scheme, a
more detailed analysis needs to be conducted to address
these issues.
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