VOLUME 67, NUMBER 23

PHYSICAL REVIEW LETTERS

2 DECEMBER 1991

Adiabatic-Expansion Method Applied to Diamagnetic Rydberg Atoms

Shinichi Watanabe and Hiro-aki Komine
Department of Applied Physics and Chemistry, University of Electro-Communications,
1-5-1, Chofu-ga-oka, Chofu-shi, Tokyo 182, Japan
(Received 30 July 1991)

We report on a successful implementation of the diabatic-by-sector method as applied to the computa-
tion of positive-energy diamagnetic Rydberg spectra of the alkali-metal atoms in a laboratory field (~6
T). The method provides the quantum-defect parameters directly, and opens up the possibility of ac-
counting for various spectral features quantum mechanically.

PACS numbers: 31.50.+w, 32.60.+i

The recent surge of studies [1] on the diamagnetic
Rydberg atom is motivated by an intricate connection be-
tween the chaotic classical motion [2] and detailed exper-
imental quantum spectra [3]. Two major theoretical ob-
jectives that challenge us here are (1) to seek a reliable
and efficient scheme capable of reproducing the details of
the experimental spectrum of an arbitrary atom at both
negative and positive energies, and (2) to interpret the
spectrum quantum mechanically, and, if possible, to
make a quantum-classical correspondence. This Letter
presents a scheme that fulfills the first objective. The
second one will be dealt with elsewhere.

A brief overview of previous theoretical schemes should
help understand the scope of the present work. Roughly
speaking, the schemes fall into one of two categories: (i)
differential equation approach, and (ii) Hamiltonian ma-
trix approach. A main merit of the former approach is
that the concept of continua is built into it in a most nat-
ural way. The close-coupling method [4] is a good exam-
ple. The configuration interaction method [5], on the
other hand, is an example of the latter. The recent suc-
cessful implementation of the complex coordinate method
of Delande, Bommier, and Gay [6] is an extension of the
Hamiltonian matrix approach; their method mocks up the
continua by introducing an imaginary part to the Hamil-
tonian.

Whichever approach is employed, computing the spec-
trum of the diamagnetic Rydberg atom at a laboratory
field requires technical innovations for achieving numeri-
cal stability and efficiency because the extension of the
space covered by the system is enormous, being of the or-
der of 10000 a.u. This Letter presents a method that
overcomes the difficulties of the differential equation ap-
proach.

Let us enlist some essential ingredients of the method
[71: (i) Adiabatic channel functions as a basis set for set-
ting up the close-coupling equation [Egs. (2) and (4)];
(ii) local frame transformation [Eq. (5)]; (iii) the two-
dimensional matching to determine the asymptotically
correct S matrix [Egs. (8)-(10)]; (iv) the multichannel
quantum-defect theory (MQDT [8] hereafter) for com-
puting cross sections with an arbitrarily fine energy mesh.

Let us outline these ingredients. First, the Hamiltoni-
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where m is the reduced mass of the electron and

B=B/2B.=2.13%x10 ~*B with the magnetic field B in T.
Here v (r) represents the interaction potential of the elec-
tron with the residual ion. The adiabatic channel func-
tions are the eigenfunctions of the equation

H.a(r,0)0;(r;0)=U;(r)e;(r;0) (i=1,2,...,0), (2)

where

H.q(r,0) = +v(r)+ +—L(rsmt9)2

2mr?

Evaluation of U; and ¢; is most conveniently achieved by
diagonalizing H ,q in the base of the spherical harmonics.
The matrix is tridiagonal and can be rapidly diagonal-
ized. Values sufficiently accurate for our purposes are
obtained up to r=12000 a.u. with at most 500 basis
functions. In the neighborhood of some radial distance r,
(ra—Ar <r, <ry+Ar), the full wave function ®(r,0) is
expanded as

oo

®(r,0) =Y L Fi(r)p:(ra:0) . 3)
i=l
This expansion is the heart of the present Letter. The
radial wave function F;(r) satisfies the system of coupled
ordinary differential equations hereafter referred to as the
close-coupling equation,

2
[— L4 ElR)+TVieIF( =0, (@)
2m dr v
where Vi (r) =(¢; (rg;0) | H 2q(r,0) | ¢:(rs;0)). Going from

one sector around r, to its neighboring sector around rp
requires the local-frame-transformation matrix

Uila— b)=(¢,-(r,,;0)||¢,"(r;,;0)) , (5)

which is unitary. With this, the solutions of Eq. (4) are
easily referenced to the adiabatic channels of the next
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sector. The dipole matrix can be transformed similarly.
Details will be given elsewhere.

The fingerprint of each atom enters into this formula-
tion through v(r) of Eq. (1). However, one may set up
the initial condition for the close-coupling equation (4),
using the quantum defect of the atom, a technique also
employed in Ref. [9], thus obliterating the need of the
effective potential field. Specifically, we set up the initial
condition at r9~50 a.u., namely,

F=1, 6)
dF =f'_Kcorcg' (7)
dr r=roy f—Kcorcg r=r0,
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where Kcore is the K matrix at zero magnetic field, and f
and g are energy-normalized Coulomb functions as
defined and discussed in Ref. [8]. For the alkali metals,
the K matrix is diagonal in the spherical basis and its ele-
ments are given by tanzu (see Ref. [10] for the specific
values of u). The dipole matrix is equated to 1 for the
p-wave channel but to 0 otherwise as appropriate to the
experiment of Ref. [3]. This means that to calculate the
absolute cross section, it is necessary to renormalize the
computed cross section by the square of the true dipole
matrix.

The solution ¥(r) is then cast into the K-matrix form
at the matching radius r,,,

Vo (0) < £u(2)ya(p) = X Kol g (2 yarlp) ®)
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FIG. 1. Master diagram displaying continuum spectra, &', and D (see text) of alkali-metal atoms (H, Li, Na, K, Rb, Cs).
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where
Sa@wap) =20 ;) || faa)9i (rni:0) )]
ga(Z)Wa(p) =Z<¢I (rm;e)' |gav/a)¢,- (r,,,;O) . (10)

Here f and g are the s-wave Coulomb functions, y,(p) is
the two-dimensional harmonic-oscillator wave function,
the index a pertains to the asymptotic channels and its
range coincides with the number of adiabatic channels
used in propagating the solutions from small distances,
and importantly the integral is along the arc z2+p2=r2.
This two-dimensional matching yields the asymptotically
correct K matrix. The dipole matrix calculated in the
spherical coordinates can be similarly transformed into
the cylindrical representation. The two-dimensional
matching thus executed, the MQDT procedure applies
[11]. The dipole matrix D™ corresponding to the in-
coming wave is readily deduced. The photoionization
cross section is then

o=(r%2w/c)|D|2. (11)

Partial cross sections may be computed in the standard
way. This, however, will be difficult for a method which
dispenses with channels.

The major difficulty associated with the procedure is
with generating accurate negative-energy Coulomb func-
tions efficiently at distances of order 10000 a.u. We have
solved this by the use of continued fractions as discussed
in Ref. [12].

In what follows, numerical integration of the close-
coupling equation is performed for the energy range be-
tween 6.7 and 7.7 cm ~! above the zero-field ionization
limit. We included the 33 lowest channels as these are
open or weakly closed in some range of r between 0 and
rm=12000 a.u. At the matching radius, about 5 chan-
nels are locally open. The K matrix referenced to these
locally open channels is constructed and the correspond-
ing eigenphase shifts (5,) and dipole matrix (D,) are
evaluated on a coarse mesh. Figure 1 is a master dia-
gram exhibiting the energy derivative of the eigenphase
sum [6'=(d/de)X..5,), and the sum of the square of the
eigenchannel dipole matrix (D?=X,|D,|?). The result-
ing photoionization cross section, Gaussian convoluted
with linewidth=0.001 cm ~', is displayed for each atom
at the top of the frame. The details of Rydberg states are
smoothed out but their trace remains as rugged features.
This diagram enables us to see how sensitively the elec-
tronic interaction of the closed-shell core affects the reso-
nance profiles. The finest Rydberg features are certainly
influenced strongly. But we call attention to the way
each diffuse interloper-type resonance [13] is affected.
The interloper-type resonances manifest themselves as
peaks in 6. The features of an interloper become min-
gled with Rydberg states of the locally open channels,
giving rise to the excessively complicated features.
Meanwhile the progression of the interlopers shows regu-

larity as indicated by the movement of each peak in &'
Particularly noteworthy is the fact that those interlopers
sensitive to the p-wave quantum defect have large dipole
moments, namely, a large value of D. They dictate the
major spectral structures except for some sharp peaks at-
tributed earlier to constructive interference known as sta-
bilization [3]. (It turns out that such peaks are members
of a Rydberg series with particular values of ¢, Fano’s
profile parameter. Indeed, the ultranarrow peak near
6.95 cm ~! belongs to the Rydberg series of the second
lowest Landau channel just like the three conspicuous
peaks near 7.5, 7.6, and 7.7 cm ~'.) The following fact
may be read off from this tendency. An interloper mani-
fests itself in the dipole matrix D as a hump if its wave
function has a moderate amplitude near the nucleus. Its
presence is considerably suppressed, however, if its wave
function has little overlap with the nucleus. Let us note
in passing that the Li and H spectra differ very little.
Nonetheless, differences in relative heights of the peaks
are rather noticeable, such as the split peaks near 7.15
cm !,

Figure 2 compares our result for Li with an experimen-
tal one [3]. There appears to be a systematic relative en-
ergy shift of about 8x10 73 ¢m ~! in spite of the suggest-
ed correspondence between experimental and theoretical
magnetic-field strengths. The overall agreement is never-
theless excellent. Note that on account of the interaction
of the Rydberg states with one continuum the unconvo-
luted cross section goes to zero between successive peaks.
The profile parameter of each resonance is a good mea-
sure of the accuracy of a theoretical scheme, but we fore-
go enlisting the representative values of the parameter
until another occasion.
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FIG. 2. Comparison of the experimental (above) and
theoretical (below) spectra of lithium in the continuum region.
(Experimental data by courtesy of Kleppner and Iu.)
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FIG. 3. Comparison as in Fig. 2 for bound states. (Experi-
mental spectrum by courtesy of Kleppner and Iu and theoretical
spectrum by courtesy of Koshino.)

The method applies to negative energies equally well.
We display in Fig. 3 the convoluted absorption spectrum
in the range 0.0-0.9 cm ~1 calculated at B =6.092 T, to-
gether with the experimental one [3] at B=6.0898 T.
The theoretical spectrum of Ref. [6] misses the closely
spaced bound states. Instead their method provides a
band profile whose width appears to stem from that of an
interloper state. The experimental density of states ap-
pears as roughly twice the theoretical one, suggesting an
involvement of some stray electric field causing the Stark
mixing of even- and odd-parity states [14].

Experiments on various atoms with an improved reso-
lution and efforts to sift out the effect of stray fields from
experimental spectra should stimulate further theoretical
studies.
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