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Anomalous Noise Distribution of the Interface in Two-Phase Fluid Flow
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The fluctuations of the advancing interface observed in experiments on two-phase fluid flow in porous
media are investigated using several evaluation techniques. We find that the amplitudes g of these fluc-
tuations are distributed according to a power law of the form P(ti) —ti "+",with p = 2.7. Our results
together with a recent model of anomalous roughening suggest a plausible explanation for the nonuniver-
sal values of the exponents observed in the experiment on two-phase flow.
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The growth of rough surfaces and interfaces under
far-from-equilibrium conditions is a very common phe-
nomenon in nature [I]. Examples include such processes
as vapor deposition, crystallization, thin-film growth by
atomic beams, sedimentation and settling of granular ma-
terials, and fluid flow in porous media. Small perturba-
tions or noise play an essential role in the development of
many of these surfaces. In particular, if the growth is
such that the surface is marginally stable, i.e., perturba-
tions of a smooth surface neither grow nor die out ex-
ponentially with time, the nature of the noise plays a fun-
damental role. It is therefore of great interest to investi-

gate the actual noise distribution in laboratory experi-
ments.

In this Letter we present the results of the first experi-
mental study of the noise distribution in the evolution of a
rough interface in an experiment on two-Auid displace-
ment in porous media. When a Auid invades a porous
medium and displaces a less viscous fluid, the interface is
acted on by a combination of forces, such as the interfa-
cial tension, which tend to smooth it out. These stabiliz-
ing forces are counteracted by the perturbations arising
from the filling of various size pores in the random medi-
um. The dynamic balance of these forces leads to the
formation of a fluctuating interface that grows with time
[2]. Our data suggest that in the case where the invading
Auid wets the porous media [2], the distribution of the
apparently random jumps of the interface have a power-
law distribution without an apparent cutoff at small
scales.

The investigation of rough surfaces and interfaces has
gained considerable impetus in recent years [1], mainly
due to the introduction of the dynamic scaling description
[3] and the development of a nonlinear equation [4] for
describing the spatial and temporal evolution of rough
surfaces. The growth process typically starts with a

smooth surface which roughens with time t. The develop-
ment of the interface can be characterized by the width

w, which obeys the dynamic scaling form [3] w(L, t)
—tpf(t/L'~). Here, P is the growth exponent, L is the
linear extension of the surface, and f(x) is a scaling func-
tion which is constant for x«1 and scales as x ~ when

The question of the form of noise and its effects on the
values of a and P has been a topic of much discussion in

some of the recent theoretical studies [5-12]. The main
theoretical approach [4] for studying the dynamics of
rough surfaces is based on a nonlinear Langevin-type
equation, proposed by Kardar, Parisi, and Zhang [4]
(KPZ equation), for the height Auctuations h*(x, t) of
the growing interface in a frame moving with a velocity
equal to that of the lateral growth,

rlh
* = vV'h*+ (Vh*) '+—q(x, t),

I 2

where v is the surface tension, k is the correction to the
velocity due to a local tilt, and ti(x, t) is the noise term.
In the KPZ paper [4] the noise was assumed to be a 6-
correlated white noise (g(x, t)tl(x', t')) =2D6 (x —x')
X6(t —t'), with a Gaussian distribution, which led to
universal exponents a=

& and P= —,
'

in two dimensions,
and to the general scaling relation [13] a+a/P =2 in all
dimensions. However, the available experimental results
[2,14-16] for a in two dimensions are in the range
0.73 & u & 0.9 and seem to disagree with the values of the
above predictions for the exponents.

In addition to 6-correlated noise, several other kinds of
noise distributions have been studied [5-121, which may
be relevant to experiments. (i) Medina, Hwa, and Kar-
dar [S] carried out calculations with spatially and tem-
porally correlated Gaussian noise; (ii) Zhang [6] intro-
duced a power-law noise with a non-Gaussian distribution
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h(x, t2) —h(x, ti)
g X,ti (2)

Although the above definition of noise is very simple
and natural, certain technical problems are associated

of amplitudes P(rt) —rt '+"; and (iii) Kessler, Levine,
and Tu [12] proposed a quenched, 8-correlated noise of
the form (t[(x,h*)t[(x',h'*)) =g 6(x —x')6(h* —h'*).
It is therefore of great interest to obtain data on the noise
distribution in an experiment because of its importance in

resolving some of the fundamental issues that have been
raised.

We have investigated the growing interface in a two-
phase viscous flow in porous media using various ap-
proaches to extract the noise spectrum from an extensive
set of digitized images of the fluctuating interface. The
conditions of the experiments were the same as reported
in Ref. [2]. The experimental setup was a linear Hele-
Shaw cell with randomly distributed glass beads between
the plates. Glycerol with 4 volr% water was injected at a
fixed flow rate into the air between the plates along a line
at one of the shorter sidewalls. The average velocity of
the interace was 70-100 nm/sec and its roughness was
generated by the almost complete filling of the random
distribution of pores and voids between the glass beads.
The stabilizing effect of the pressure distribution in the
glycerol was negligible, because of the low applied flow
rates used in the experiments.

The evolution of the two-fluid interface was recorded
on a videotape and digitized with 768-pixel horizontal
resolution, which defined the size of our system in pixels
(L =768). A typical set of digitized interfaces is given in

Fig. 1 of Ref. [2]. We analyzed the data from the mo-
ment the glycerol entered the plates along one of the
shorter sides (t =0) until the average height of the inter-
face reached —,

' of the cell size (t =T). Because of the
very fast sampling rate (=0.28 sec), two successive digi-
tized interfaces diA'ered from one another only at a few
points. In all our calculations the digitized interfaces
were used and averages were taken over a number of in-
dependent experiments with the same system.

We used two diA'erent definitions to extract the noise
distribution from the digitized data. In both cases we
defined a reference interface h(x, tq) for all surfaces in

the data set h(x, ti)/ic[a 7[ These reference inter-
faces were defined using the condition that the shift
Ah =(h(t2))» c [I t 1

—(h(t I))» c [I t 1 between the
average heights of the surface pairs had to be a fixed
value. Because of the constant injection rate this corre-
sponded to t2 =t

I + r with r proportional to hh.
Using the first definition we calculated the deviations

from the average position of the interface h(x, t)
=h(x, t) —(h(t)), for a set of t

~ and t2 values, where
averages were taken over x E [I, . . . , Ll. Then the noise
was defined as the difference of these deviations normal-
ized by the shift hh (see Fig. I ):
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FIG. 1. The noise is defined as the random jumps between
the surfaces h (t i ) and h (1p) normalized by hh =&h (t z))—(h(tl)) in the moving frame (h(t)) =O.

with its calculation. Independently of whether the inter-
faces come from experiments or numerical simulations,
there is a small probability of finding two interfaces
separated exactly by h, h, because the values of the aver-
age heights are not integer. Consequently, the statistics
in such a calculation is very poor. To avoid this problem
in the evaluation of our data we introduced a parameter
BA «hh and defined the reference interface as having an
average height (h(t2)), nearest to (h(t I)),+Ah in the in-
terval

[(( h(t )I)„+A h 6h), . . . , ((h(t ))I+Ah+Bh)] . (3)

Then the actual shift hh'=(h(tq)), —(h(t I))„between
the compared surfaces is close to hh, but not exactly the
same. The limit theoretically would be h, h 0 and
6h 0 while Ah/Sh ~. In practice, obviously this is
impossible. As the best possible choice we considered the
parameters of the data sets and the limits described above
and we chose Ah =1 and Bh =0.03 in our calculations.
These values are in the range where the results are not
sensitive to the actual choice for hh.

We determined t[(x, t) for dift'erent experimental runs.
The open circles in Fig. 2 show the corresponding noise
distribution for g(x, t) ) 0 averaged over the experi-
ments. Our experimental data points can be fitted by a
straight line on a log-log plot indicating a power-law de-
cay of the noise amplitudes distribution. The exponent of
the corresponding power-law behavior P(t[) =ct[ "+') is

p =2.67 ~ O. I9.
Zhang [6] and others [8,11] have demonstrated that in

a number of discrete surface growth models with power-
law noise and in a mean-field approximation [7,9], the
roughening exponent a depends on the value of p. For
p =2.67 the numerical simulations of the Zhang model
[6,81 and its variants [8,11] give estimates for a close to
0.8. These results are in remarkably good agreement
with our earlier experimental value of a=0.81 for the
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FIG. 2. The logarithm of the distribution P(g) for Ah =1
and Bh =0.03 plotted against the logarithm of the noise ampli-
tude g. The data points plotted by circles and stars correspond
to data from experiments and computer simulations, respective-
ly. The uncertainty associated with the measured g values is il-
lustrated by representative error bars. Inset: The logarithm of
P(g) plotted against g' for the RSOS model, demonstrating
that the noise distribution in the computer simulations of this
model is Gaussian.

present system [2]. Amar and Family [8] have simulated
a model with a power-law noise distribution and found
that the height fluctuations have the same distribution as
the input noise. This demonstrates that the presence of a
power-law distribution of height fluctuations is directly
related to the presence of a power-law noise distribution.
However, even though our results agree well with the re-
cent results on growth anomaly, it is not obvious how the
input noise arising from the presence of the porous media
is transformed by the surface dynamics into the output
noise measured experimentally from the set of digitized
interfaces.

As a nontrivial test of our approach we determined the
noise distribution in a computer model. We generated
surfaces using the restricted solid-on-solid (RSOS) modei

of Kim and Kosterlitz [17] for a system of size L =768
and randomized sample rate as was used in our experi-
ments. The measured noise distribution is denoted by
stars in Fig. 2, which shows the expected Gaussian noise
distribution in the computer model. This comparison un-

derlines the highly nontrivial and unexpected nature of
our experimental finding. To emphasize this point fur-

ther, in the inset of Fig. 2, the logarithm of P(t)) is plot-
ted against tl for the RSOS model, demonstrating that
the noise distribution in the computer simulations of this
model is Gaussian.

We also determined the noise distribution directly
from the KPZ equation (1) by writing gKpz=t)h*/t)t
—(k/2)(Vh*) —vV h*. Using our data sets we numeri-

cally determined the derivatives in this expression. The
only unknown parameters are the values of the constants
k and v. We were able to calculate k using the deriva-
tives, because for large system sizes and/or periodic
boundary conditions (V h*(x)), =0 and as in the case of
the KPZ equation we assumed that (tl(x, t)) =0. Then
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F'lG. 3. The spatial correlation function C(x) plotted vs x
(measured in pixels) for the noise in the two-fluid displacement
experiment. It demonstrates the short-ranged nature of the
noise correlations which cannot give rise to anomalous growth.

3209

from Eq. (1), A, is given by A, =2((()h*/(it))„/((Vh*) ).
Unfortunately the parameter v is still unknown. We cal-
culated the noise for several values of v in order to inves-
tigate the effect of v on gKpz. There is only a small
difference between the noise distribution obtained from
the KPZ interpretation and the earlier direct method.
The data can be fitted well in both cases by a power-law
function with a slight dependence on the value of v in the
range 0 to 5. The slope in the KPZ case is p =2.5+ 0.3.
The larger error bar is due to the more noisy data. The
reason for this difference in the error bars is that gypz is
much more sensitive to digitization errors. The details of
this calculation will be given in a subsequent paper.

An alternative form of the noise correlation has been
proposed by Medina, Hwa, and Kardar [5] who defined
the noise through the spectrum D(k, ro) as

(g(k, ru)q(k', ro')) =2D(k, ru)8 '(k+k')6(co, ru')

with a power-law behavior of the form D(k, ro)—~k~ ~co . For 0=0 and for small p it has been
found [5,10] that the exponent a is the same as in the un-
correlated case. For p) p, (p, =0.25 in d= 1+1) the
exponent a was found to increase with p linearly up to
a=1 at p=1. According to these results [5,10] it is im-
portant to measure the correlations in the noise because
long-range spatial correlations may also lead to higher
values of the roughening exponents. Figure 3 shows
the spatial correlation function C(x ) = (rl(x', r )—rl(x'
+x, t))t„,&

vs x (measured in pixels) for our experi-
ments. These results indicate that the noise correlations
in the experiment are short ranged and completely die out
at about 10 pixels, similarly to the behavior we observed
for the simulated surfaces. We also calculated the tem-
poral noise correlation function C(t) = (rl(x, t') g(x, t'—
+t))&, , ) for the experimental and computer-generated
surfaces. In both cases the correlations were found to
vanish for t & r.
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Recently Martys, Cieplak, and Robbins [181 have
simulated two-fluid flow in porous media using a quasi-
static model. They simulated the medium by a triangular
array of disks with random radii and they represented the
interface by a sequence of arcs between pairs of disks
with radii that were determined by the surface tension
and the pressure. Their scaling studies [18] showed that
in the case of a wetting fluid the interface is a self-affine
fractal with a roughness exponent a =0.81+ 0.04 in close
agreement with our experimental result [2]. In addition,
they found that the distribution of invaded areas, when a
single arc becomes unstable, has a power-law form.
Since the distribution of invaded areas is related to the
integral of the noise as defined by Eq. (2), this numerical
finding is consistent with our experimental result.

To summarize, we have found that the noise distribu-
tion in experiments on two-phase flow in porous media
has a power-law distribution. This result agrees with
Zhang's suggestion that the anomalous values found in
the experiments could be due to the presence of a power-
law noise. However, there does not exist a first-principles
explanation for this unusual result. In addition, it is not
clear how the particular value of p found in the experi-
ments is selected. Because of the dynamic nature of the
noise, it is quite possible that the value of p could be
nonuniversal. These questions clearly need to be explored
both theoretically and by experiments on other systems.
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