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The Korteweg-de Vries Hierarchy as Dynamics of Closed Curves in the Plane
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The Korteweg-de Vries, modified Korteweg-de Vries, and Harry Dym hierarchies of integrable sys-
tems are shown to be equivalent to a hierarchy of chiral shape dynamics of closed curves in the plane.
These purely local dynamics conserve an infinite number of global geometric properties of the curves,
such as perimeter and enclosed area. Several techniques used to study these integrable systems are
shown to have simple diN'erential-geometric interpretations. Connections with incompressible, inviscid
fluid flow in two dimensions are suggested.
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In describing the dynamics of shapes in many physical
and biological systems, one encounters the mathematical
problem of preserving globa1 geometric quantities such as
surface area and enclosed volume. Examples of such dy-
namics include the motion of regions of incompressible
IIuids (conserving volume), of polymers (conserving
length and topological quantities), and of cell membranes
(conserving both enclosed volume and surface area). For
systems such as membranes and polymers, a representa-
tion of the dynamics in terms of the motion of surfaces of
one or two dimensions is clearly most natural; in the Auid

dynamical context it is often conceptually simpler to
focus on the boundary of the Auid rather than the bulk,
again leading to surface dynamics. Within this descrip-
tion, the imposition of global constraints generally entails
strong nonlocality as a consequence of long-range hydro-
dynamic interactions [1,2], which may enter the surface
dynamics through Lagrange multipliers conjugate to the
conserved quantities [3,4].

Here, we study examples of surface dynamics that are
purely local, yet nevertheless maintain global constraints.
Focusing on the simplest case of closed curves in the
plane, and appealing to very general considerations re-
garding the conservation of perimeter and enclosed area,
we find a class of motions that in fact conserves an
inftnite number of global geometric quantities. These dy-
namics are closely related to the hierarchies of integrable
systems of the Korteweg-de Vries (KdV) and modified
Korteweg-de Vries (mKdV) types.

Our main results may be summarized as follows. Each
equation of the hierarchies is associated with a particular
choice of curve dynamics of the form

r, =Ui+ Wt,

where n(s, t) and t(s, t) are the unit normal and tangent
vectors at arclength s and time t at the point r(s, t), and a
subscript indicates diAerentiation. We restrict our atten-
tion to purely local normal and tangential velocities
U=U(tc, tc,„.. . ) and W=W(tc, tc„. . . ), where tc is the
curvature. These dynamics thus bear a strong resem-
blance to "geometric" models of interface evolution pro-
posed in the study of crystal growth [5]. By imposing the
condition that arclength and time derivatives commute,
we find that W is determined by U. After recasting the
dynamics (I) for the vector r(s, t) into an evolution equa-
tion for the curvature, we find that for a particular se-
quence of functions U, the curvature equations coincide
with the evolution equations of the mKdV hierarchy. The
functions U obey a recursion relation, discovered earlier
in a different context [6]. These velocity functions are, in

turn, the Hamiltonian formulation of the mKdV dynam-
1cs.

The mKdV hierarchy is related to the KdV hierarchy
through the Miura transformation [7], which, in the
present context, provides a link between the dynamics of
the curvature and that of the curve itself when viewed in

the complex plane. Indeed, the appearance of a Schro-
dinger-like operator in the inverse scattering transform
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and

3, =(~ds U, (3)

where in the second relation of (2) we have assumed that
W is periodic. From these, we see that global length and
area conservation constrain only the normal velocity U,
leaving W unspecified. One may choose to conserve arc-
length locally [4] by demanding that the integrand in (2)
vanish identically for all s, yielding a differential equation
for W

W, = —JcU.

Integrating this relation determines W up to an arbitrary
function of time e(t); W(s) = —f'ds'xU+c= —8 'AU.

This choice implies that arclength and time derivatives
commute,

[8„8,]r = (W, + xU)t =0.

method [8] and in the Lax formulation [9] are naturally
associated with the properties of the curve in the complex
plane. We remark also on the relationship between the
mKdV and "Harry Dym" (HD) hierarchies [10,11],
demonstrating that the HD hierarchy corresponds to a
Eulerian rather than Lagrangian view of the interface dy-
namics. We thus conclude that the KdV, mKdV, and
HD hierarchies are three equivalent views of the same
underlying shape dynamics. These considerations suggest
a strong link between KdV dynamics and those of two-
dimensional inviscid, incompressible lluids [12]. The re-
cent appearance of the HD equation in studies of the
Saffman-Taylor problem [13] lend support to this hy-
pothesis.

Connections between the differential geometry of curve
motion and integrable systems have been noted before.
One example [14] is that the nonlinear Schrodinger equa-
tion describes the dynamics of a thin, nonstretching vor-
tex filament, while a second [15] extends that analysis to
include more general types of motion and shows how they
are connected to other integrable systems such as the
sine-Gordon equation. For the special case of a space
curve with constant torsion, a relation to one member of
the mKdV hierarchy was found. On a more formal level,
there have also been connections between the mathemat-
ics of these integrable systems and the Lie algebras asso-
ciated with curves [16], as well as the theory of differ-
ential forms [17].

We begin by establishing notation and considering gen-

eral features of the motion of a curve in the plane [4,5].
The unit tangent vector in (1) satisfies t =r„and is relat-

ed to the curvature and normal vector by t, = —Jci and

n, =tet With t.he dynamics of the curve as in (1), and

the length and area of the curve given by L =f ds,
W = —, f ds r && r„we obtain the time derivatives

L, =(~ds(xU+ W, ) =(~ds xU

In terms of an arbitrary parametrization e, the arclength
s is s(a, t) =f'da' Jg, where the metric g=r, r . The
condition W, = —KU then implies g(=0, so the parame-
trization does not evolve in time: s, (a, t) =0.

Note that any dynamics in the form (1), with W deter-
mined as above, may be recast as an equation for the cur-
vature [5],

x, = —QU, 0 =8,, +x +x,B 'x. . (4)

The mKdV hierarchy. —One notices from (2) and (3)
that area and perimeter are conserved if U and JcU are to-
tal derivatives with respect to arclength of any periodic
functions. The simplest pair of this type is

U"'=0, W"'= —1, (s)

where we have set c=——1. The curvature then evolves
according to

JC(
= —

JCs (6)

a reparametrization of the curve. The less trivial choice
[1s],

U"'=~
Se 2 (7)

with c=0 yields

3 2 (8)

which is the modified Korteweg-de Vries equation [18].
Equations (6) and (8) are in fact the first two members

of the mKdV hierarchy of integrable systems. The next
member,

JC(
=

JC5q g JC Jcq 2 Jcq p JC Jcqqq 10JCK q JCqq,
]5 4 5 3 5 (9)

corresponds to the choice

U(3) + 3 2 (10)

= ——'
K + —' K' —

JCJC

(„)2) (12)

and Wt"~ = —i) 'KU " . Note that each of the functions
U " is chiral, i.e., odd under the transformation s —s.
The recursion relation connecting the successive members
of the mKdV hierarchy was known from earlier work of
Chem and Peng [6]. The operator 0 is seen from (4) to
have universal geometrical significance in defining the
curvature evolution under arclength-conserving dynamics.

In addition to conserving length and area, by construc-
tion, these dynamics also possess an infinite number of
constants of motion of the mKdV hierarchy. In the
language of curve motion, these are integrals of polyno-
mials in the curvature and its derivatives. Each of these

From these results, it is clear that the right-hand side of
each curvature evolution equation defines the normal ve-

locity U of the succeeding equation. Thus, K, = —OU ",
with
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conserved quantities Ht,. =f dshi, has a density ht, obey-
ing a continuity equation

Under the Miura transformation (15) the general result
connects the complex velocity and the current density,

(1,ht, + ti, jt, =0, W" —iU" =K" (u= —
—, x —ix, )'. (i 7)

where the jp are the associated current densities. For
mKdV, which is already in the form of a continuity equa-
tion, the successive conserved densities are

h2= —
2 K', h3= g v + 2 K's &I(vs~2 3 4 ] 2 (13)

with j2
= —

& K
—a a, , + & ~„etc. Note that the hl, 's

are the successive tangential velocities of the hierarchy.
Quantities such as the area enclosed by a curve are not

directly expressible in terms of the curvature and its
derivatives, but rather correspond to multiple Integrals of
the curvature. The existence of conserved quantities of
this type may be related to the "prolongation structures"
discussed by Wahlquist and Estabrook [17].

It is worth noting that other choices of velocities, such
as U =x"x, and W = —x"+ /(n +2), also conserve per-
imeter and enclosed area, but it is not known if the result-
ing dynamics is integrable.

The Kd V hierarchy. —The Kd V hierarchy for a vari-
able u(s, t) can be cast in a convenient form in terms of
the nth-order conserved densities T " of the KdV equa-
tion [19,20] u, +u„, —3uu, =0, which parallel those of
the mKdV hierarchy:

u, +a,K(")=0, (14)

where the current density K " =ST "/6u with T ' =u,
T =

& u, etc. The two hierarchies are connected by
the Miura transformation [7]

K' lK'~ .2 (is)

t e', n ——ie",
0(s, t) being the tangent angle. The dynamics of the
curve (I) are then

(W(n) U (n) ) i() (i6)

Apart from overall rescaling and terms that are total
derivatives, the conserved densities of mKdV [Eq. (13)]
are the M iura-transformed T " of Kd V. With the gen-
eral equation of motion for the curvature, we find by sub-
stitution of (15) into (14) that every order [6] of the KdV
hierarchy factorizes into

((I, —ix)(x, + nU(")) =0,
so that if x(s, t) satisfies the nth-order mKdV equation,
then u satisfies the nth-order KdV equation. The factor
(), —i x may be interpreted as a covariant derivative.

One observes that for the KdV equation W
—iU =u under the Miura transformation. The signifi-
cance of the combination W —iU is best seen in a repre-
sentation in which a point on the curve is given by
z(s, t) =x(s, t)+iy(s, t), with tangent and normal vectors

For the KdV equation, the Galilean invariance under
the transformations s s + 3X,t, u u +X, for any real
constant X, is seen to be equivalent to a redefinition of the
tangential velocity W W+k through the correspon-
dence u =W —iU G. iven the tangent angle 0(s), one
may also describe the mirror image of the curve through
the duals of the tangent and normal vectors t*
=exp[ —i0(s)] and n* =it* Th.e velocity (16) of the
mirror image is then (W+iU)e '. The original and
dual descriptions, when combined with Galilean invari-
ance, then define two difIerent Miura transformations

2
K' + lI(c, +k,2

a well-known Backlund pair [20] for the KdV equation.
The Lax formalism. —The Riccati equation connecting

u and K under the Miura transformation is linearized by
the substitution x=2iiit, /(it, yielding a Schrodinger equa-
tion for y,

(2ti, , +u)y=0. (18)

This and the relation ~=0, implies that the "wave func-
tion" @=exp(—i0/2), i.e., the square root of the dual
tangent vector.

The operator L =28,, + u in (18) plays a central role in

the Lax description of the KdV hierarchies, in which the
KdV equations themselves are cast in the form L, + [L,
M " ] =0, where the operators M " are such that
[L,M " ] is multiplicative, a condition connected with the
constancy of the eigenvalues of L [20]. As a conse-
quence, y evolves in time as

(i9)

and using the explicit forms of M [20], this is readily seen
to generate the time evolutions of the tangent angle 0,

0(= —0„0(=—0„,—2 0, ,
I 2

etc. By diAerentiation with respect to arclength, these
are equivalent to the curvature evolutions in Eqs. (6),
(8), and so on.

Eulerian description. —An alternative to the I.agrang-
ian description of curve motion in which points on the
curve are labeled by arclength s is the Eulerian labeling

by position in space z(s), determined by the nonlocal re-
lation

Ws

z(s t) = ds'e""" (20)

Geometric quantities may then be defined in terms of z as
0= —i ln(z, ), x= —iz, ,/z„etc. The dynamics of the
tangent vector then have the form B,z, =8, [(W—iU)z ,l.
If we now consider [10,11,21] redefining the independent
variable to be z (s, t) and define the new function
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Y(z(s, t), t) =exp[i'(z(s, t), t)1, then

Y, = Y'a. (W —tU), (21)
where W and U are viewed as functions of Y(z, t)
through tc = —i Y„etc., and t), = Yt), .

From the above, it is clear that we may associate an

equation of the form (21) with each member of the
mKdV hierarchy. For example, the simplest dynamics
8 = —1, U=O yields Y, =0, illustrating that reparame-
trizations do not involve actual motions of the curve in

space. For the next members of the hierarchy we obtain
the Harry Dym equation,

Y, = —Y Y,„-, , (22)

and an equation previously found [11] to be transform-
able to Eq. (9),

Yt = Y Yg- 5Y Y- Y4- 5Y Y Yzz- 2 Y Yz Yzzz

and so on.
Relevance to incompressible hydrody nami c glows.—The conservation of enclosed area for each of the curve

dynamics associated with the mKdV hierarchy suggests
that they may describe the motion of boundaries of in-
compressible fluids. Recall that the Kelvin circulation
theorem [22]

&t dl v=const,
oJ P (23)

~here 8 is a contour in the fluid flow and v is the local
velocity, follows as a consequence of the Euler equation
of incompressible inviscid fluid flow. Its validity here is a
direct consequence of the conservation laws for the
tangential velocities in Eq. (13). This may be a concrete
realization of observations [12,23] concerning the preser-
vation of eoadjoint orbits of certain dual Lie algebras ob-
served with incompressible fluid flow. Thus, it may be
conjectured that to each member of the hierarchy there is
an associated two-dimensional I]ow field, but the con-
struction of these flows is an as yet unsolved problem.

In summary, we have shown that the mathematics of
the KdV hierarchy finds a natural interpretation in the
language of diAerential geometry as area- and perim-
eter-preserving dynamics of plane curves. We may natu-
rally ask the question: Do these geometric considerations
suggest a method of constructing integrable systems in

higher dimensions?
This work is a direct outgrowth of research conducted

with S. A. Langer. We are indebted to P. Constantin, 3.
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McLaughlin, 3. Miller, and A. I. Pesci for important dis-
cussions. This material is based upon work supported un-
der a National Science Foundation Graduate Fellowship
(D.M.P.), and Grant No. CHE91-06240.
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