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boundary conditions should simulate their interaction
with the other vortices of the FLL in which they are em-
bedded. We use anisotropic London theory, which ap-
plies when b =8/8, q & 0.2 and K » 1; 8 is the average in-
duction and B,q is the upper critical field.

Within anisotropic London theory, the total energy (in-
teraction energy and self-energy) of a system of arbitrari-
ly distorted vortices is given by [11]

where the tensorial interaction between vortices is [12]

V,ti(r) = V~(r)8,ti+ V;~(r); (a,P) C (x,y, z), (2)

V~(r) =
2 exp( —r),1

4zk, br
(3)

(4)

In Eq. (4), we have (a,P) C (x,y) and V2'(r) =V2'(r)
= Vz'(r) =0 when the average vortex direction (z direc-
tion) is parallel to the uniaxial symmetry axis c. The
functions G~(r) and Gq(r) are given by

(5)G;(r) =a;exp( —r) —b;exp( —p),
with r =r/k b, p=(p +I z )' /X„a~ =1 —a2, b~ =1

b2, a2=2+p—/k, br, b2=2+p /k, P, r =p +z, p
=x +y, I =X,/k, b, and A,,b and A,, are the penetration
depths for currents in the a-b plane and parallel to the c
axis, respectively.

When Aux lines with finite core radii are in close con-
tact, Eq. (1) should be supplemented by a scalar core at-
traction [10] obtainable from GL theory [13]. For sim-
plicity we use only the potential (2), but with a circular
inner cutoff which simulates this core attraction, achieved
by replacing r by (r +(,b)' in (2) [14,15]; (,b is the
coherence length in the a-b plane, and will serve as our
unit length throughout. For an isotropic superconductor,
the cutoA is circular. As shown in Ref. [12], the cutolf
for an anisotropic superconductor is really elliptical. For
our numerical calculations, we use the simpler circular
cutoff scheme. The elliptical cutoff will be used in forth-
coming less transparent computations, where it will be
shown that the results we obtain for the anisotropic case
are changed only quantitatively, but not qualitatively.
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configuration) is computed for lsotropic and anisot
gy. The cutting barrier for the correctly curved flu
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The observation of a hexagonal Aux-line lattice (FLL)
in the high-T, superconductor (HTSC) YBa2Cu307 at
4.2 K and an uncorrelated FLL at 77 K [1] has renewed
interest in the ground state and transport properties of
extreme type-II superconductors in a magnetic field. A
possible interpretation of these observations is in terms of
FLL melting. In 30, estimates exist showing that the
FLL may melt well below the upper critical field H, 2(T)
[2-4]. Clarification of the nature of the proposed melting
transition and the properties of a Aux-line liquid requires
more work.

Weak positional correlations between the Aux lines im-

ply that a single strong pinning center (if it existed) could
not effectively pin large parts of the FL system. Flux-
line entanglement [2] could produce an internal viscosity
or shear stiffness which partly restores the lattice nature
of the vortex system and enhances pinning of the FLL by
a few pinning centers [5]. On the other hand, collective
pinning [6] from dense randomly distributed weak pin-
ning centers is most effective in a Aux-line liquid [7],
since in this case the flux lines can adjust to the pins in an
optimal way. Entanglement would then reduce pinning.

It was shown in [8] that when one assumes the Aux

lines to be rigid and parallel, a large vortex-cutting bar-
rier AU= 2lH, ~@o=l@olnK/2xpok (—50kT, in Ba-Sr-
Ca-Cu-0) results. Here Co=2.07X10 Gcm is the
flux quantum, k the magnetic penetration depth, l a
minimum characteristic length in the problem (e.g.,
coherence length (), and x is the Ginzburg-Landau (GL)
parameter. However, this estimate shows that a con-
sideration of parallel, straight-vortex configurations is

inappropriate for discussing vortex cutting, because the
factor Inx originates from the energy in the far geld re--
gion, which is not involved in cutting [9]. A more ap-
propriate treatment of cutting assumes a finite angle a
between the rigid Aux lines. The result for the cutting en-
ergy d,U„t~@ocota/2pol, [10] does not have the un-

physical lnK factor, although the assumption of rigid
straight vortices still leads to an overestimate of the bar-
riers for vortex cutting. In Ref. [8] essentially infinite re-
laxation times for vortex disentanglement were found by
assuming that vortex cutting does not take place.

To get more insight into the cutting problem, we con-
sider the static configuration of two curved Aux lines by
minimizing their energy with respect to arbitrary vortex
shape subject to appropriate boundary conditions. These
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To get an analytical estimate, we first consider two rig-
id, straight Aux lines inclined an angle a with respect to
each other and with a distance d at the point of their
closest approach. %e assume the symmetry axis between
the vortices to be parallel to the c axis of the uniaxial su-
perconductor.

Rigid flux lines cannot curve locally to lower their in-
teraction energy as they approach each other. The cut-
ting barrier AU(a, d) is then completely determined by
their mutual interaction energy U;„&(a,d), &U=U;«(a,
d ) —U;„&(a,0). For the magnetic interaction between
straight vortices in a uniaxial superconductor we find in

the present geometry,

2
r

@p 1 a d
U;„i(a,d) = cot—exp

4pp X~b 2

1 a
2

tan —exp

Note that U;„t(a,d 0) is ftnite Note . also that even in

this simple geometry, it is not possible to bring (6) into
the form of the isotropic result [10] [see Eq. (8) below]
simply by a scaling of lengths.

For I =X„/X,b ~, we have from (6),

U;„,(a,d) = @p a2

cot—exp
4ppk~b 2

d
~ab

which should be compared with the isotropic result [10]
obtained from Eq. (6) when A,,b =X„

(p 2

U;„,(a,d) = cotaexp
2p pA, ~b

d
~ab

For isotropic superconductors it is seen from U;„t that the
electromagnetic interaction between Aux lines changes
sign when a=ap=tr/2. When I ee, U;„& never changes
sign, but it reaches the value 0 at ap=+. Thus, for rigid
flux lines, we find for I ~ 1 that tr/2~ ap(tr. This in
crease of the "neutral angle" ap reAects the tendency of
supercurrents to flow predominantly in the basal plane in

anisotropic superconductors.
From the above remarks, one might conclude that vor-

tex cutting in general is suppressed in strongly anisotrop-
ic superconductors. However, this conclusion is prema-
ture: Vortices in anisotropic superconductors can lour
their self-energy by increasing a; i.e., they prefer to lie al-
most in the a bplane. -

The self energy per unit l-ength of a straight flux line
along i and tilted an angle 0 with respect to the c axis
follows from (1) [12]:

with g~(8) =A~/y~, g2(8) =22/y2, A~ =(y3 —yl)/(y2—
y) ), Az =1 —2 ), y) =Qb (X,'+Xs2)/2k', yp =k2, y3

=(~'+) ')/2 i, =In[~(~'+~') 't'/2't2~ ], i, =ln(r~)
and Xs=(k,bsin 8+A,, cos 8)'t . The normalized self-
energy J(8) and line tension P(8) =(I+t) /t)8 )J(8) are
shown in Fig. I for ted =20 and two values of I". J(8) is a
rapidly decreasing function of 0 for I )& 1, and it is sym-
metric around 8=0 and 8 =m/2. One has [12]

(0p Intr @p ln(I tr)J0 =;Jtr2
4RppA ~'b 4&@p~ab~c

In large-x, anisotropic superconductors with Bllc, energy
can be gained when vortices curve locally to achieve large
angles a: It does not cost much self-energy, but reduces
the interaction energy. This eAect reduces the cutting
barriers, illustrating the importance of allowing for local
curving of the vortices in the vicinity of their closest ap-
proach in a calculation of cutting barriers. The enhanced
tendency of FL curving in anisotropic superconductors
can also be seen from the anisotropic, nonlocal tilt modu-
li of the FLL [3,12]. This nonlocal efl'ect, contained in

(1), implies that it costs little energy to bend a flux line

sharply, in contrast to what one would expect from a local
string model of the flux lines.

For our numerical computations based on (1)-(5), we
write the two symmetric vortex shapes r&(z) =[x(z),
y(z), z] and rz(z) = —r~(z) with symmetries x( —z)
=x(z), y( —z) = —y(z). These shapes are quite gen-
eral, describing, e.g. , a double helix by x(z) =cos(kz),
y(z) =sin(kz), or our starting configuration x;„(z)=x
+ (xp —x )exp[ —(z/z ) ], y;„(z) =y tanh(z/zy).
Here, x is a parameter which describes the extent to
which Aux lines are twisted, while xp is a parameter
which we will use to constrain the intervortex distance at
z =0. When x /y is reduced the vortices become more
entangled.

In early computations, we used trial functions which

7z/2 0
2pp 4z

Explicitly, one finds (an elliptical cutoff is used)

J(8) = '
[g (8)i~+gz(8)!2],

4Ãpp Xg
(10)

FIG. I. Line energy J(8) (IO) and line tension P(8) =J+J"
of an isolated, straight Aux line vs angle 8 between the Aux line
and the c axis for anisotropy ratios I =k, /X, b =1.5 and 3. For
I = I one has P =J. For I » I the maximum in P(8) becomes
very sharp and high.
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lowing for curving of the FLs leads to spontaneous vortex
cutting, or equivalently, an instability of the model con-
figurations we have studied, as soon as the vortices are
slightly twisted. This feature will not be captured by cal-
culations on rigid vortices. Increasing mass anisotropy
slightly increases the cutting barriers and tends to stabi-
lize the twisted-vortex configuration.

The work of E.H. B. was supported by the German
Bundesministerium fur Forschung und Technologie.

F'IG. 4. Total energy U(xo) for various anisotropy ratios &

for a case where the vortex pair for I = I is on the verge of cut-

ting (x = —0.5, y =4, re=20). Inset: The energy barriers

hU=U, ,„—U;„vs x (one error bar indicated). Energy unit

is Uo. Note saturation of AU with increasing I .

In summary, we have studied the ground-state proper-
ties of twisted two-vortex configurations in isotropic and
anisotropic superconductors. We have done this as a
basic step towards a realistic description of the thermo-
dynamics of entangled fiux-line liquids. An essential in-

put in our calculations is the exact 30 nonlocal, aniso-
tropic London potential between vortex elements [11,12].
Exact analytical results for cutting of straight FLs and
numerical results for cutting of curved FLs have been ob-
tained. Exact ground states for symmetrically twisted
two-vortex configurations have also been obtained by
viscous relaxation of prescribed initial configurations.
We have demonstrated that it is crucial to allow for curv-
ing of the FLs in the vicinity of their closest approach to
get quantitatively and even qualitatively correct results
for the cutting barriers. Including the self-energy and al-

"' On leave from Max-Planck-Institut fur Metallforschung,
Institut fiir Physik, 0-7000 Stuttgart 80, Germany.
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