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Flux-Line Cutting in Superconductors
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The energy barrier for mutual cutting of a pair of twisted flux lines (prepared in a simple entangled
configuration) is computed for isotropic and anisotropic superconductors by minimizing their total ener-
gy. The cutting barrier for the correctly curved flux lines is much smaller than the analytically calculat-
ed barrier for rigid, parallel flux lines and may even be negative, indicating instability of the entangled
configuration. Vortex cutting is thus an effective mode of disentanglement of flux lines.

PACS numbers: 74.60.Ec, 74.60.Ge

The observation of a hexagonal flux-line lattice (FLL)
in the high-T. superconductor (HTSC) YBa,Cu307 at
4.2 K and an uncorrelated FLL at 77 K [1] has renewed
interest in the ground state and transport properties of
extreme type-II superconductors in a magnetic field. A
possible interpretation of these observations is in terms of
FLL melting. In 3D, estimates exist showing that the
FLL may melt well below the upper critical field H(T)
[2-4]. Clarification of the nature of the proposed melting
transition and the properties of a flux-line /iquid requires
more work.

Weak positional correlations between the flux lines im-
ply that a single strong pinning center (if it existed) could
not effectively pin large parts of the FL system. Flux-
line entanglement [2] could produce an internal viscosity
or shear stiffness which partly restores the lattice nature
of the vortex system and enhances pinning of the FLL by
a few pinning centers [5]. On the other hand, collective
pinning [6] from dense randomly distributed weak pin-
ning centers is most effective in a flux-line liquid [71,
since in this case the flux lines can adjust to the pins in an
optimal way. Entanglement would then reduce pinning.

It was shown in [8] that when one assumes the flux
lines to be rigid and parallel, a large vortex-cutting bar-
rier AU = 2IH.®¢=I®§Ink/2ruoh> (~50kT, in Ba-Sr-
Ca-Cu-O) results. Here ®,=2.07x10"7 Gem? is the
flux quantum, A the magnetic penetration depth, / a
minimum characteristic length in the problem (e.g.,
coherence length &), and « is the Ginzburg-Landau (GL)
parameter. However, this estimate shows that a con-
sideration of parallel, straight-vortex configurations is
inappropriate for discussing vortex cutting, because the
factor Ink originates from the energy in the far-field re-
gion, which is not involved in cutting [9]. A more ap-
propriate treatment of cutting assumes a finite angle a
between the rigid flux lines. The result for the cutting en-
ergy AUcu < ®§cota/2uor [10] does not have the un-
physical Inx factor, although the assumption of rigid
straight vortices still leads to an overestimate of the bar-
riers for vortex cutting. In Ref. [8] essentially infinite re-
laxation times for vortex disentanglement were found by
assuming that vortex cutting does not take place.

To get more insight into the cutting problem, we con-
sider the static configuration of two curved flux lines by
minimizing their energy with respect to arbitrary vortex
shape subject to appropriate boundary conditions. These
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boundary conditions should simulate their interaction
with the other vortices of the FLL in which they are em-
bedded. We use anisotropic London theory, which ap-
plies when b =B/B.> <0.2 and x> 1; B is the average in-
duction and B, is the upper critical field.

Within anisotropic London theory, the total energy (in-
teraction energy and self-energy) of a system of arbitrari-
ly distorted vortices is given by [11]

O?
=ﬁ00izjffdrfdr,pl/ap(l‘i_l‘j), (1)
where the tensorial interaction between vortices is [12]

Vap(£) =V (r)S5+Ve,(r); (a.p) € (x,y,2), ()
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Vi(r)= Al exp(—F), 3)

Ve(r) = G D8 +G TS| @)
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In Eq. (4), we have (a,B) € (x,y) and V¥ (r) =V3(r)
=V%"(r) =0 when the average vortex direction (z direc-
tion) is parallel to the uniaxial symmetry axis é. The
functions G (r) and G1(r) are given by

Gi(r) =a;exp(—F) —b;exp(—p) , 5)

with F=r/Aa, p=*+T222)"2/x,, ay=1—a,, b, =1
—by, ay=2+p*A%F, by=2+p*A2p, ri=p>+z2 p?
=x24+p2 I'=A./Aap, and Az and A, are the penetration
depths for currents in the a-b plane and parallel to the é
axis, respectively.

When flux lines with finite core radii are in close con-
tact, Eq. (1) should be supplemented by a scalar core at-
traction [10] obtainable from GL theory [13]. For sim-
plicity we use only the potential (2), but with a circular
inner cutoff which simulates this core attraction, achieved
by replacing r by (r2+¢&2)"? in (2) [14,15); &, is the
coherence length in the a-b plane, and will serve as our
unit length throughout. For an isotropic superconductor,
the cutoff is circular. As shown in Ref. [12], the cutoff
for an anisotropic superconductor is really elliptical. For
our numerical calculations, we use the simpler circular
cutoff scheme. The elliptical cutoff will be used in forth-
coming less transparent computations, where it will be
shown that the results we obtain for the anisotropic case
are changed only quantitatively, but not qualitatively.
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To get an analytical estimate, we first consider two rig-
id, straight flux lines inclined an angle a with respect to
each other and with a distance d at the point of their
closest approach. We assume the symmetry axis between
the vortices to be parallel to the ¢ axis of the uniaxial su-
perconductor.

Rigid flux lines cannot curve locally to lower their in-
teraction energy as they approach each other. The cut-
ting barrier AU(a,d) is then completely determined by
their mutual interaction energy Uin(a,d), AU =U;n(a,
d) —Uin(a,0). For the magnetic interaction between
straight vortices in a uniaxial superconductor we find in
the present geometry,

® 1 a d
U; d)=—— t L -
ala,d) o l ™. co > exp ™
1 a d
- ——M tan——2 exp | — —M ] ] . 6)

Note that Uiy (a,d — 0) is finite. Note also that even in
this simple geometry, it is not possible to bring (6) into
the form of the isotropic result [10] [see Eq. (8) below]
simply by a scaling of lengths.

For I' =A./As — o, we have from (6),

Uini(a,d) =~ d ] : )

cotiexp -
}\vab

g
duoday 2
which should be compared with the isotropic result [10]

obtained from Eq. (6) when A, =A.,

5

2p0)ap

Uinla,d) = cotaexp

ab

d ] (8)

For isotropic superconductors it is seen from Uj, that the
electromagnetic interaction between flux lines changes
sign when a =aqo=nr/2. When I'— oo, Uiy, never changes
sign, but it reaches the value 0 at ap==. Thus, for rigid
flux lines, we find for =1 that n/2 < a9 <nr. This in-
crease of the “neutral angle” ao reflects the tendency of
supercurrents to flow predominantly in the basal plane in
anisotropic superconductors.

From the above remarks, one might conclude that vor-
tex cutting in general is suppressed in strongly anisotrop-
ic superconductors. However, this conclusion is prema-
ture: Vortices in anisotropic superconductors can /ower
their self-energy by increasing a; i.e., they prefer to lie al-
most in the a-b plane.

The self-energy per unit length of a straight flux line
along Z and tilted an angle 6 with respect to the ¢ axis
follows from (1) [12]:

o dk. -
J@)=— ) — V.. (ko). ()]
2u0 4r? +
Explicitly, one finds (an elliptical cutoff is used)
®f A
J(0) =——"<1g, ()], +g2(0)1] (10)
4rpo Ao

with g(0)=A,/71, £:(0)=A>/ys, A1=(y3—7y)/(r
1), Ax=1—Ay, yn=A%W2+A3/23, r2=A 73
=(2+13)/2, 1 =InlxW2+13)"?/2"], I,=In(Ix),
and Ao=(02sin20+12cos20)'2. The normalized self-
energy J(6) and line tension P(8) =(1+982%/86%)J(6) are
shown in Fig. 1 for x =20 and two values of I". J(8) is a
rapidly decreasing function of 6 for I'>>1, and it is sym-
metric around =0 and 6 =n/2. One has [12]

®¢Ink ®¢In(rx)

THoAZy Arporaphe

J)= J(n/2) = 11
In large-«, anisotropic superconductors with BIIC, energy
can be gained when vortices curve locally to achieve large
angles a: It does not cost much self-energy, but reduces
the interaction energy. This effect reduces the cutting
barriers, illustrating the importance of allowing for local
curving of the vortices in the vicinity of their closest ap-
proach in a calculation of cutting barriers. The enhanced
tendency of FL curving in anisotropic superconductors
can also be seen from the anisotropic, nonlocal tilt modu-
li of the FLL [3,12]. This nonlocal effect, contained in
(1), implies that it costs little energy to bend a flux line
sharply, in contrast to what one would expect from a local
string model of the flux lines.

For our numerical computations based on (1)-(5), we
write the two symmetric vortex shapes ri(z)=I[x(z),
y(z),z] and ry(z)=—r(z) with symmetries x(—z)
=x(z), y(—z)=—y(z). These shapes are quite gen-
eral, describing, e.g., a double helix by x(z) =cos(kz),
y(z) =sin(kz), or our starting configuration xin(z) =x e
+ (x9— xw)expl — (z/2,)?], yin(z) =yotanh(z/z,).
Here, x is a parameter which describes the extent to
which flux lines are twisted, while x¢ is a parameter
which we will use to constrain the intervortex distance at
z=0. When X«/y is reduced the vortices become more
entangled.

In early computations, we used trial functions which
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FIG. 1. Line energy J(8) (10) and line tension P(8) =J+J"
of an isolated, straight flux line vs angle 0 between the flux line
and the € axis for anisotropy ratios I'=A./As =1.5 and 3. For
=1 one has P=J. For '> 1 the maximum in P(8) becomes
very sharp and high.
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had the appropriate boundary conditions built in and al-
lowed for the variation of progressively more parameters.
Later, a more accurate, more general, and much faster
numerical method was developed which finds the mini-
mum energy by a “viscous” relaxation of x(z) and y(z)
by iterating the equations x(z)— x(z) —néU/sx(z),
y(z)— y(z) —néU/8y(z). Here, U is our energy func-
tional for the vortex pair, and n ~' a viscosity. Boundary
conditions (asymptotically parallel FLs) are enforced by
binding the vortices elastically to their initial configur-
ations with a weak restoring force which vanishes in the
cutting region |z| < z,, == 20& 4.

The cutting barrier is obtained by prescribing the
closest distance of approach d =2x, and plotting the
constrained equilibrium energy U(d) with X and ye as
parameters. If U has a minimum at 2x9=d¢, (global
equilibrium) and a maximum (a barrier) at 2x¢=d,
<deq, then a cutting barrier AU =U nax — Umin must be
overcome. With decreasing x ., when dp =d.q, the vor-
tices spontaneously collapse and cut. In Fig. 2 we plot
U/Ugy when k=20 and I'=1 for various values of the pa-
rameter x« as a function of the constraint parameter xo,
with energy unit Ug =®3&E.5/871or2. Shown in the inset
are cutting barriers as a function of the twisting parame-
ter x~. We have chosen x=20; the normalized cutting
barrier AU/U, depends only weakly on k. In Fig. 3 we
show the corresponding vortex configurations for Xxo
= —0.6, y =4 for various values of x¢ for the isotropic
case '=1. These states are obtained after 1000 relaxa-
tion steps from the initial state [x;,(z),yin(z)]. Very
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FIG. 2. Total energy U(xo) of the vortex pair for y.=4,
k=20, I'=1, vs the prescribed distance xo=d/2 with x« as a
parameter. U is referred to its minimum Umin (equilibrium
configuration), except for xo= —2 where no minimum occurs
(unstable configuration). The maximum in U(xo) defines the
energy barrier for vortex cutting, AU =U max — Umin, plotted vs
X in the inset (error bar indicated with x= —0.5). Energy
unit is Uo =®¢Eqs/8 muorls.
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similar ground-state configurations are found in the an-
isotropic case I' > 1, but with vortices slightly more repul-
sive when held close together at z=0. This is due to both
a harder vortex interaction, and a reduction of line ten-
sion for I'> 1. At slightly negative values x < — 1, the
maximum in F at d, disappears: The vortex pair is un-
stable at rather small values of the prescribed twist.
Hence even moderate flux-line twisting will result in
spontaneous flux-line cutting.

Comparing our results with the parallel, rigid flux-line
estimate, AU =2/H. ®y and using /=2&, and z,
= 20¢&,,, we see that local curving of flux lines gives a
reduction of AU per unit length by a factor of ~—10 for
k=20 even for a small twist. Hence, curving of the FLs
in the vicinity of their closest approach substantially
reduces the barriers compared to estimates using rigid
flux lines.

In Fig. 4 we plot the normalized cutting barrier AU/U,
for k =20 and various values of I" as a function of the pa-
rameter x.. The value of the energy barriers for vortex
cutting and the stability of the entangled-vortex configur-
ation in this geometry as the mass anisotropy is increased
is determined by the balance between three effects: the
reduction of the line tension for vortices ~II¢, the in-
crease of line tension for vortices ~1¢, Eq. (10) and
Fig. 1, and the hardening of the interaction between vor-
tices, Eq. (6). It turns out that the latter is the dominat-
ing effect, leading to cutting barriers that are slightly in-
creased in anisotropic as compared to isotropic supercon-
ductors. This result is not obvious, as is clear from our
discussion following Eq. (10).

FIG. 3. Computed shapes r; = —r;=(x,y,z) of a vortex pair
for yo=4, xe=—10.6, k=20, ' =1 (isotropic superconductor).
Inset: x(z) is even and y(z) is odd. The closest distance
d =2x9=2x(0) is prescribed by a constraining force. Here, the
equilibrium configuration [with x'(0) =0] occurs for xo==S5.
Length unit is Eqp.
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FIG. 4. Total energy U(xo) for various anisotropy ratios I'
for a case where the vortex pair for ' =1 is on the verge of cut-
ting (xeo=—0.5, y=4, k=20). Inset: The energy barriers
AU =U max — Umin Vs X (one error bar indicated). Energy unit
is Up. Note saturation of AU with increasing I'.

In summary, we have studied the ground-state proper-
ties of twisted two-vortex configurations in isotropic and
anisotropic superconductors. We have done this as a
basic step towards a realistic description of the thermo-
dynamics of entangled flux-line liquids. An essential in-
put in our calculations is the exact 3D nonlocal, aniso-
tropic London potential between vortex elements [11,12].
Exact analytical results for cutting of straight FLs and
numerical results for cutting of curved FLs have been ob-
tained. Exact ground states for symmetrically twisted
two-vortex configurations have also been obtained by
viscous relaxation of prescribed initial configurations.
We have demonstrated that it is crucial to allow for curv-
ing of the FLs in the vicinity of their closest approach to
get quantitatively and even qualitatively correct results
for the cutting barriers. Including the self-energy and al-

lowing for curving of the FLs leads to spontaneous vortex
cutting, or equivalently, an instability of the model con-
figurations we have studied, as soon as the vortices are
slightly twisted. This feature will not be captured by cal-
culations on rigid vortices. Increasing mass anisotropy
slightly increases the cutting barriers and tends to stabi-
lize the twisted-vortex configuration.
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