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Coulomb Blockade and Nonperturbative Ground-State Properties of Ultrasmall Tunnel Junctions
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We present a nonperturbative calculation of the ground-state energy of a normal tunnel junction. The
junction with a large conductance shows Coulomb blockade of tunneling provided the external charge
Q„ is less than e/4. For Q, ) e/4, the band is flat and the junction behaves like an Ohmic resistor. We
predict a phase transition between insulating and conducting behavior of the junction controlled by an
external Ohmic resistance. We plot the corresponding zero-temperature phase diagram and calculate
the junction eAective resistance.
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Considerable progress in understanding discrete
charge-transfer phenomena in ultrasmall tunnel junctions
has been achieved in the past several years (see, e.g. ,
Refs. [1,2] for a review). Modern lithographic tech-
niques make it possible to fabricate tunnel junctions with

very small capacitances C(10 ' -10 ' I and investi-

gate single electron tunneling (SET) effects experimen-
tally. At low temperatures T & E, =e /2C, the SET pro-
cess is strongly influenced by the Coulomb interaction.
As a result, at low T and small values of an external
charge SET is energetically forbidden (Coulomb block-
ade of tunneling) and the "Coulomb gap" appears on the
dc current-voltage characteristic [1,2]. This eff'ect has
been clearly demonstrated experimentally (see, e.g. , Refs.
[20-28] of the review in [2]).

The Coulomb blockade effects are influenced by quan-
tum fluctuations which correspond to both continuous
(induced by an external circuit) and discrete changes of
the junction charge. The first type of charge fluctuation,
which is particularly important for the experiments with

single junctions (e.g., [3]), was investigated in a number
of papers [4-7]. The case of a purely Ohmic environ-
ment was analyzed in Refs. [4,5]. It was demonstrated
that the Coulomb blockade is practically destroyed by
charge fluctuations in an external circuit with an Ohmic

resistance R, of order R, )Rq =tr/2e =6.5 kO. On a
more general basis, the effect of electromagnetic environ-
ment was studied by Nazarov [6] and later by Devoret et
al. and by Girvin et al. [7]. The approach [6,7] allows
one to calculate the I-V characteristic of a single tunnel
junction for an arbitrary external impedance Z(co) per
turbatively in a, =Rq/R, ;R, is the junction resistance.

In this Letter we present a nonperturbative analysis of
charge fluctuations and the ground-state properties of a
normal tunnel junction. We consider the effect of virtual
electron tunneling across the junction on the Coulomb
blockade. We calculate the ground-state energy Ep(Q, )
and show that this effect is qualitatively different from
that of an Ohmic shunt: Even for large values of a,
Coulomb blockade survives provided the external charge

Q is less than e/4, while for lQ~l ) e/4 the junction
shows Ohmic behavior. We also investigate an additional
effect of charge fluctuations in the external circuit. We
predict a zero-temperature phase transition between insu-

lating and resistive behavior of a tunnel junction, plot the
corresponding phase diagram on the tt, -a, plane (a,
=R~/R, ), and evaluate the junction effective resistance
~ eff

We shall consider the grand partition function for a
"tunnel junction plus environment" [2],
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make use of the fact that for C 0 there is an instanton
trajectory p(r ) =4 ract aQnr which "connects" states
with diff'erent m. Substituting this trajectory into (2) we

get S(Q) =2a, +trQ/2E„ i.e. , an important range of in-
stanton frequencies is A ~F, Contrary to the case of a
superconducting junction [4] (in which small values of 0
do not contribute), non-Gaussian ffuctuations with very
small Q play an essential role at T 0. Because of this
the instanton analysis of Ref. [4] cannot be directly ap-
plied to the case of a normal junction. The appropriate
technique is presented below.

r

Sp[v ] = dr4 2 2e

where 0 & r & 1/T, C is the capacitance of a tunnel junc-
tion, the phase and the quasicharge variables p(r) and
q(r) are defined by the relations p(r) =2eV(r) and
q(r) =I(r), V(r) is the voltage across the junction, and
I(r ) is the current in the circuit.

Let us first consider the case of an isolated junction
[1/Z(co) 0] with an external charge Q, on it. In this
case all nonzero frequency components q„&o can be
dropped from (1) and the second term in the parentheses
of (1) becomes i fdr(pq/2e) 2triQ„/e We shall ca. l-
culate the ground-state energy Ep(Q„) for large values of
a, . To evaluate the path integral over p(r) in (1) we
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al zero modes of the operator MIv =6 Sp/6@Iv, defined on
an N-instanton trajectory,

n=]

r ]/2 T

dOI detMp 2' mQ,dr)„ exp — S 0„+
det'M~ n=l

where we assume i~ & i~ —i & . & r i. The value det'M~ is calculated with the 2N zero modes excluded, and
Mp=B Sp/Bp is taken on the trajectory p(z) =0. As in [4] we define SMiv =Mp —MIv and rewrite the ratio of deter-
minants as

N
= Q (k„k—„)exp

™" +O(6M )
det M~ n=i ln»

~ dQIv4~ dzIv
Q~ (3)

(4)

w here X, =a, i!rp„i/2rr+rp„/8E, and p„(z) =(2T) 'i cosrp„z are the eigenvalues and the eigenfunctions of the operator
Mp. Disregarding the power-law interinstanton interaction we get

p p iV

In )N kn

V n~~W&n 8~,Ee=2Ny+2 ln 5
XQg

with y=0.577 the Euler constant. It is easy to check that higher-order terms in BM& can be neglected. To decouple
the 2N integrations in (3) we denote do„=dA„/O„and introduce new variables z„—=z„~a„/2. Then summing over
all possible instanton configurations and over all winding numbers m we get, for T 0,

exp[ —Ep(Q )/T]

In order to evaluate the contribution of Auctuations
around the trajectory P(z) we have to calculate the ei-
genvalues of the operator MI =8 Sp/Bj' . For C 0
there are two nontrivial zero modes with the eigen-
functions tr I(z) =(8+0) 'i 8@/Bz and pq(z) =(8n/
0 ) 'i tip/t)Q which correspond to a shift of an instan-
ton in the z direction and to changes of an instanton size e„=4-1. Extracting collective coordinates corresponding
rr= l/0, respectively. Analogously there are 2N nontrivi- to these zero modes we present the N-instanton contribu-

tion to Z in the form

+ I/T + TN i f TN= Z dzfv «Iv I dz~ I
— dzI+ dzI N! 4TAcosw=p" p 4'p & p &p 4 p

4 = (8ai'E„/x')exp( —2a, + y),

2rrQ

(7)

z, —I/E„. Integration over z — in (6) gives the factor
T /2N!, and the series (6) is exactly expressed in
terms of the probability integral. Then we put T 0 and
arrive at a final result for the ground-state energy of a
normal tunnel junction with large e„

—icos(2+Q /e), iQ„i (e/4,
Ep(Q )='0

iQ i) /4 (8)

Equation (8) is one of the main results of the present pa-
per (see Fig. I). It demonstrates that (i) for iQ, i (e/4
the junction shows the Coulomb blockade even for a, »1
and the effective capacitance C,Ir (for small Q ) is renor-
malized, C,Ir —(C/a, )exp(2a, ), similarly to the case of a
superconducting junction with large a, [2,4,8], and (ii)
for iQ„i )e/4 the band is Aat and the junction behaves
like an Ohmic resistance, i.e., the discharging process
occurs for such values of Q .

We see that for aI »1 specific features of the discrete
electron tunneling mechanism show up only for iQ„i(e/4, in which case due to an instanton contribution the
ground-state energy Ep(Q ) is less than zero. As a result
the charge state Q =Q is stable and the Coulomb
blockade takes place. On the other hand, for iQ i

)e/4

instanton contribution plays no role and a tunnel junction
with a, »1 is practically indistinguishable from an Ohm-
ic resistor. More precisely, if the initial charge exceeds
e/4 the tunneling process occurs and eventually the junc-
tion will be discharged up to iQi =el4. Thus, strictly
speaking, there is no ground state in our problem for
iQ, i

) e/4. The last result diA'ers significantly from that
for a superconducting junction which has a stable ground
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FIG. l. The ground-state energy Eo(q) of a normal tunnel
junction for ai)) 1.

3169



VOLUME 67, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NOVEMBER 1991

state for ~Q, ~
(e/2 [2,4]. Note that discontinuity of

|IEp/8Q„at )Q„( =e/4 takes place only for a, »1 while
for moderate a, the energy Ep(Q, ) is smooth and gradu-
ally flattens off for ~Q, ~

&'e/4. For small a, the tendency
to flattening of Ep(Q ) in the vicinity of the point

Q, =e/2 has also been demonstrated in Ref. [8].
Let us emphasize some interesting features of the in-

stanton technique developed here. Contrary to the stan-
dard technique in which the size of instantons is small (as
compared to the average distance between them) and
does not fluctuate, here fluctuations of the instanton size
turn out to be important and configurations with large in-
stantons give the main contribution to the partition func-
tion. We also point out that the result (8) is insensitive to
the specific form of the long-time power-law interaction
between instantons which gives an additional factor
—at ' in the preexponent of the expression for h, , Eq.
(7), where we estimate v as 0~ v~ —,

' . This efl'ect can-
not change any of our conclusions and we will not discuss
it further below.

Now let us investigate an additional efIect of an exter-
nal circuit. For af »1 one can split the path integral over
p(r) (1) into two parts (small fluctuations and instan-
tons). Integration over small fluctuations of p(r) near
p=pp leads to the renormalization of the external im-
pedance,

Z( ICo) =Z( i co) + I/2(cl col + a, e /x) .
An instanton contribution can be evaluated within the
framework of the adiabatic approximation in the same
spirit as has been done in Ref. [9]. Assuming that the
characteristic frequency scale coq for the quasicharge
variable q is much smaller than the typical instanton fre-
quency 0*, one can reproduce the analysis presented
above and get

Z = Dq exp( —S,p.[q] ),
(9)

S,rr[q] =(T/2) g ~ro~Z( —iro) (q„~+J dr Ep(q),
where Ep(q) is defined in (8) with Q„q+pe, p an in-
teger number. Making use of the result (6) we estimate
the typical instanton frequency 0* as (r+)—(r )—1/
0*—I/A. Thus the adiabatic form of Sdr (8),(9) holds
for mq«h, . For coq & 6 the quasicharge variable intro-
duces a low-frequency cutoA' 0 ~ mq into our problem.

In this case we return back to the technique previously
developed for a superconducting junction with a, )&1 and
EJ « E, [41, where co~ now plays the role of the 3oseph-
son coupling energy EJ. Analogously to [4,9] we again
derive Eqs. (9) with

Ep(q) = —A) cos(2xq/e),
(10)

A~ = (16a,E,,/7r ) exp( —2a, + y),
and the corresponding validity condition E, )) coq—a, h~. The crossover between the expressions (10) and
(7),(8) takes place at ro~ —A. For an interesting range of
frequencies ro«a, E, we put Z( —iso) =L~ro~+R, +R, .

Then the problem (9),(10) can be mapped onto that of
a neutral Coulomb gas of logarithmically interacting
charges and treated by the standard renormalization-
group (RG) technique (see, e.g. , [2, 10]). Making use of
the results [10],we arrive at the RG equations

dh/d(into ) =3(4ap 1), dap/d(into, ) =0, (11)
where A =A~/ro„ro, . =min(E„1/apLe ), and ap =R~/(R
+R, ). Equations (11) show that 6 scales out to zero
with decreasing m, if ap& 4 and grows if ap( —,'. lt
means that for ap & 4 the potential Ep(q) (10) does not

play any role and can be dropped. In this case fluctua-
tions of the charge in the external circuit completely des-
troy the correlation between SET events (and thus the
Coulomb blockade) and the tunnel junction effectively
behaves like an Ohmic resistance R=R, . On the other
hand, for ap ( 4 the Coulomb blockade is not destroyed
by the charge fluctuations in the external leads. For sim-
plicity let us assume that the inductance I. is small and
ro, —E,. Then using the expression for A~ (10) we
rewrite the first RG equation (11) for ap ( 4 and aI )&1
as

dai/d(lnro, ) =(
&

—2ap)(1+1/2a, ) .

In the limiting case a, =ap =0, Eq. (12) practically coin-.
cides with the RG equation derived by Guinea and Schon
[8] for a superconducting junction with Eq «E, and
a, &) 1 by means of a different technique. Equation (12)
shows that the effective (dimensionless) conductance of a
tunnel junction a& decreases during the scaling procedure
for ap& 4 . If we start renormalization at m, . —E„stop
it at m, =a*, and then put m* =T we immediately recov-
er the effective linear resistance R; (T) at ap( —,'. For
R~ (R; (R, we get

1
—4ap 1 —4apRI' =RI 1+ ln +— ln 1+ ln
2aI Ee 2a 2a, E,

For lower temperatures two competing processes —thermal activation and quantum tunneling of the charge in the poten-
tial Ep(q) (8)—contribute to the junction conductance. For ap( —, both processes yield a zero junction conductance
1/R; 0 at T 0. Combining this result with the scaling equation for a, «1 and small L, da, /d(into, ) =a, /2a„
which also demonstrates that a, decreases with ro, and R; ee T ' [the exact expression for R; (T) for a, «1 is
given in Refs. [2,4]], we can conclude that at T 0 the tunnel junction shows insulating linear response for all a, pro-
vided a, is small enough (phase I in Fig. 2). For a, » 1 the phase transition between insulating and resistive (R) phases
takes place at a, =1/(4 —1/a, ). The position of the phase boundary for small a, is a subject for further investigations.

3170



VOLUME 67, NUMBER 22 PH YSICAL REVIEW" LETTERS 25 NOVEMBER 1991

Finally, let us briefly discuss the I-V curve of the system at T=0. We switch the voltage source V in series with the
impedance Z(ru) and calculate the current in the circuit I or, equivalently, the nonlinear resistance of the junction
R," (V, ) =V /I —R, . For a, ((I this calculation has been carried out in Refs. [2,4,7]. In the limit a, »1, there are
several diAerent regimes. For eV„& 2zh, and ap & 4 the quasicharge q cannot move classically and the eAective resis-
tance R; (V„) is very large for small V, . This is the Coulomb blockade regime. In this regime R; (V, ) is finite only
due to quantum I]uctuations of q. For eV ) 2trh and tt, ((] the classical dynamics of q in the periodic potential Ep(q)
(8) is described by a simple equation Roq+ r)Eo/l)q = V„which yields

—+—1—
R,, +R( 2

2- -]/2 1+2 ter/eV
arctan

1 —2 ter/eV

lj2

(14)

This is the SET oscillation regime. The result (14) is val-

id provided the frequency of SET oscillations I/e is small-

er than A, i.e., for eV, SA/a, . For larger values of V the
resistance R,' (V, ) can be evaluated from Eq. (12) pro-
vided we put to* =eV /[I+R, /Rt' (V, )]. For ao ( —„'

and [a, exp( —2tt, )] ' Srt, eV /E, ~1, with loga-
rithmic accuracy we get

~ —
I

1
—4ap u, eV,1+ ln

er ar F.

In this regime coherent SET oscillations are washed out.
For larger values eV„& mi n( E„a,.E, ), instanton effects
are not important and the physical diff'erence between
discrete and continuous charge-transfer mechanisms
practically disappears. In this limit the I-V curve is de-
scribed by the theory [5] for all a, and a, .

In conclusion, we present a nonperturbative analysis of
quantum Auctuations of the charge in normal tunnel

junctions. We calculate the ground-state energy of the
junction and demonstrate that the Coulomb blockade of
electron tunneling is not destroyed even for et &) 1 but re-
stricted to the values of an external charge ~Q„~ (e/4
(for a, 0 the analogous condition reads

~ Q„~ & e/2
[1]). For ~Q„~ & e/4 and a, &&1 the junction behavior is

Ohmic. %'e show that quantum fluctuations of the
charge in the external circuit essentially inhuence SET
eAects and predict a zero-temperature phase transition

'O. 2r

FIG. 2. The phase diagram of a normal tunnel junction at
T=0. lt consists of insulating (I) and resistive (R) phases.
RG How lines for a& are indicated by arrows.

between insulating and resistive phases which correspond,
respectively, to high and low external impedances Z(tu

0). We present a nonperturbative calculation of the
junction resistance R,'" for a wide range of parameters of
the system. Finally, we would like to note that tunnel
junctions with moderate a, (e.g. , a, =2-3) appear to be
most appropriate for experimental investigation of the
eA'ects discussed here since for very large aI technical
problems with getting to exponentially low temperatures
T/E, cc exp( —2a, ) can make quantum effects practically
unobservable.
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