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Exact 3D space- and time-dependent Green's functions are computed for the k-channel Kondo eAect

in the universal large-distance, long-time regime, using conformal field theory. They exhibit crossover
from Fermi-liquid form far away, to singular non-Fermi-liquid behavior near the impurity, where
charge, spin, and "Aavor" degrees of freedom become "deconfined. " Explicit expressions are given for
the resistivity, p, for all k and for the spin-density and pair-density Green s functions, for k =2. For
k =2, p(T) —p(0) cx: T'I and the pair susceptibility ~ lnT.

PACS numbers: 72. 15.Qm, 03.70.+k, 05.70.3k, 74.65.+n

Consideration of the orbital structure of an impurity
atom coupled to a (30) electron gas led Nozieres and
Blandin [1] to study the multichannel Kondo problem.
An infrared fixed point governs the low-temperature
properties. When the number k of degenerate channels
of electrons is not larger than 2s„where s is the size of the
quantum-mechanical impurity spin, this Axed point is a
Fermi liquid. However, in the opposite case, k & 2s, an
interesting non-Fermi-liquid fixed point occurs. The
two-channel case (k =2, s = —,

' ) has attracted particular
attention recently in the form of the quadrupolar Rondo
effect [2]. The latter was argued to account, under cer-
tain assumptions made in Ref. [2], for rrtarginal Fermi
liquid and unusual superconductivity properties of
uranium-based heavy fermion systems and cuprate high-
T, superconductors. (Very recent experiments [3] seem
to support this picture for the dilute compound U-
Y) „Pd3, but see below. )

Values for some thermodynamic exponents of the non-
Fermi-liquid Kondo fixed points have been calculated us-

ing the Bethe ansatz [4]. Green's functions are not
directly accessible by Bethe ansatz methods.

Recently [5,6], a complete, analytic solution of the
low-temperature Axed points has been given, in terms of
boundary critical phenomena of conformal field theory
["I] (CFT) for all values of k and s. The exact non-

Fermi-liquid exponents agree precisely with the Bethe an-

satz values. New exact results, not known previously

from Bethe ansatz studies, have been obtained in Refs.
[5,6,8], such as, e.g. , stability and new universal Wilson
ratios for the non-Fermi liquids as well as their exact
asymptotic finite-size excitation spectra. All results agree
excellently with numerical values, whenever the latter are
available [5,8,9].

In this Letter we show how to calculate the exact 30,
time- and space-dependent Green's functions at large
length and time scales in the Kondo problem. It turns
out that they are determined by the universal spectrum of
excitations of the strongly coupled system. Explicit ex-
pressions will be given for the two-channel case (k =2,

s = —,
' ). (For details and the explicit results obtained for

arbitrary number k of channels and impurity spin s see
the longer version in Ref. [10].) Interestingly, as our re-
sults show, only the p-wave pairing susceptibility diverges
logarithmically as T 0 in the two-channel (s =

2 )
case; however, for anisotropic Kondo coupling also the
(s' =0 component of the) s-wave pair susceptibility
diverges. Possibly, this may provide a new mechanism
for unusual superconductivity (Ref. [2]).

In the single-channel Kondo eAect, all Green's func-
tions exhibit Fermi-liquid behavior in the asymptotic re-
gime; i.e., at length scales long compared to vF/Ttc and
times long compared to 1/Ttc. The only eA'ect of the im-
purity in this limit is the tt/2 phase shift. However, in the
multichannel Kondo eA'ect, in the overscreened case,
k & 2s, the critical behavior is more interesting. Green s
functions again exhibit universal behavior in the asymp-
totic regime of long lengths and times; however, it is not
Fermi-liquid-like. We give explicit expressions for the
Green's function of the spin or pair operator, at points ri
and r2 far from the impurity and with a large time sepa™
ration r|2. When the distances are large compared to the
time separation, r~, rq))v ~Frlq~, we must obtain Fermi-
liquid behavior. However, in the opposite limit ~here we
take ~r lq~ ~, keeping r~, ri fixed, we obtain a non-
Fermi-liquid scaling exponent, which leads to a diverging
susceptibility. Remaining in the asymptotic regime, we
may vary the ratios of r],r2 and vFr ~2. The Green's func-
tions then exhibit nontrivial crossover behavior between
Fermi-liquid and non-Fermi-liquid exponents. This
crossover is described by universal functions of the ratios,
which we calculate exactly here, for the first time. (They
are inaccessible to Bethe ansatz techniques. )

Our result for the spin-density Green's function, in the
limit r~, rq&&vF

~ r|2~, agrees with that conjectured in Ref.
[11]. However, we disagree on the form of the one-
particle Green's function conjectured in Ref. [11],where
charge and flavor degrees of freedom are completely ig-
nored, as well as on the discussion of superconductivity
properties.
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The Kondo interaction only affects the s-wave part
+(r) of the electron operator, +(r), which we write

+(r) =(I/irrr242)%'(r)+higher partial waves,

where

+(r) =[e ' PL(r) —e ' ' (i'(r)] . (2)

yL and (iLR are incoming and outgoing waves, or left and
right movers in the eAective one-dimensional field theory
description, satisfying the boundary condition yL(r =0)
=yR(r =0). (See Ref. [5], Appendix A.)

The k-channel Kondo Hamiltonian reads, when ex-
pressed in terms of excitations near the Fermi surface,

UF
H(k)r) =

2z
dr iiiLL' (r) iiLL,J(r) —i(iL$'i(r) iiLR al(r) +2XX~JL(1=0) S ~,L,ag r

(3)

where

&L(r) =iiLj'"(r) —,
'

~:-yL,.;(r)
is the spin current and S is the impurity-spin operator [la-
bels a =1,2 of the two spin states, and j=1, . . . , k of the
channels ("fiavors") are suinmed over; o are Pauli ma-
trices].

The Kondo coupling constant k~ is asymptotically free
and flows to a strong-coupling fixed point, governing the
low-temperature properties. In a space- (iinaginary) time
(r = —it) picture the physical region is the upper half
complex plane [z=vFr+ir; r) 0] (the imaginary axis
being space). The Kondo interaction occurs only at the
boundary, the real axis [r=0]. The free bulk Hamiltoni-
an is conformally invariant due to the linear dispersion
relation. At the fixed point the Kondo impurity spin has
completely disappeared, leaving behind a particular con-
formally invariant boundary condition (see Refs. [5,6,
12]), characterized by a "Kondo" boundary state lK).

(+(1)(rz)@(2)(„).. . )g(~(1)()~(2)(
(a), (b)

For the non-Fermi-liquid fixed points this state cannot be
expressed in terms of properties of free fermions. Free
fermions can also be described in bosonized form by a
direct product of Wess-Zumino-Witten (WZW) models
[13] associated with charge (Q), spin (j), and fiavor (p)
degrees of freedom, supplemented by a constraint on
combining [5,14] them. It turns out that the Kondo
boundary state can be expressed in terms of charge, spin,
and Aavor degrees of freedom. It is in fact given [12],us-

ing a modular transformation, by the exact excitation
spectrum of the non-Fermi-liquid. For the Kondo prob-
lem this can be obtained [5] using the fusion rules of the
WZW models. By means of the Verlinde formula we ob-
tain [6] simple closed form expressions for lK) in terms of
the modular S matrix [see Eq. (10)]. The boundary
state lK) determines [15] the correlation functions exact-
ly.

In bulk CFT a Green's function is a sum of products of
left and right factors

)( )(1))R' (Z1 )PR (Z2 ) )(b) M(a) (b) (5)

Z=V Z +If
F

[in this sense one can speak of a factorization N(r, r)- ((1L(z)(7(R(z*)]. Here (a), (b) label different "conformal
blocks" [16]. In the presence of a conformally invariant boundary [7]

(L I ~ I )@ (r2 &2) ' ' '
)bound Z(PL (Z I )QL (Z I )(t'L (Z2)1))L (Z2 ) ' ' ' )(a)' D(a) (6)

(a)
(reminiscent of the "method of images"). If the left-hand side of Eq. (6) is a two-point function, (a) labels conformal
towers (Fi . 1). At lz1 —z2l (( lz) l, the bulk operator-product expansion (OPE) has the form
—g, CQ @ '. This identifies [7] D ' as the product of the bulk OPE coefficient multiplied by the amplitude [17]

8 "=(a;Ol8)/(0;Ol8) of the one-point function
(N ' (r, r ))bound. Here l8) is the boundary state. In the
case of invariance (of bulk and boundary) under a direct

)&

product of conformal algebras, the conformal blocks fac-
g (Z&) torize. This is the case in the Kondo problem when the

boundary condition cannot be expressed in terms of fer-
(1) (2) ~ (n) mions, and bosonization becomes essential: The fermion

L can be decomposed into charge, spin, and fiavor parts:
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FIG. l. Conformal block describing a two-point function in

the presence of the boundary.

iiLL, 1(Z)~ae gL a(Z)hL, ;(Z),

yR „(z*) e' " ' '
gR, (z*)hR;(z*),

where (I) is a U(1) boson, while gL and hL are the left-
handed parts of matrix fields in the fundamental repre-
sentation of the SU(2)-level-k and SU(k)-level-2 WZW
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model [13l, respectively. Thus, for example,

(YL, (z 1 ')ÃI!i (z i )'YI. (z2)'pR, p (z2 ))bo d

where

Q(,)(z),z),zp, zp )

=(g/. .(z))gIt'(z) )g/t'~(zp)gI. ,p(zp ))(/) (9)
is a WZW conformal block [13] (and a similar block
'P(~) for h). The coefficients D/. ~ for the noninteracting
theory, characterized by a fermionic boundary state lF),
are easily determined by the requirement that Eq. (8) be
expressible in terms of free fermions. The ratio of ampli-
tudes

g (0'.j.p)

+ (0),(g,j,p)
(0,0,0;0!F)(Q,j,/;0!1(.

.
)

(0,0,0;0 I &)(Q,j,/i;0 IF)
= (S//S/) (S,'/S, '), (lo)

which, for the Kondo problem, can be derived using the
Verlinde formula [6,12] from the exact spectrum (given

by the fusion rules), determines D/~, hence the exact
strong-coupling Green's functions. [Here S~/ represents
[18] a modular transformation on the WZW characters. ]
Finite-temperature Green's functions are obtained by
conformal mapping [5].

Using Eq. (2), the s-wave one particle -Green's func
tion is a sum of four terms involving LL, RR, LR, and RL
products of fields. A general feature of boundary confor-
mal field theory is that any (bulk) Green's function in-

volving purely left-moving (or purely right-moving) fields
is completely unaffected by the boundary. Thus the LI
and RR terms have exactly the same asymptotic behavior
as at Xg =0, i.e. , (yI. (z i) i//I (zq)) =1/(z (

—zz) and

(yg(zi)lyR(zq)) =1/(zi zq ). The —LR and RL terms
have the values S/(zi —zi*) and S/(zi* —zq), respective-

ly, i.e., 5 times their zero-coupling values, ~here S is a
universal constant:

cos[x(2s+ 1)/(2+ k)]
cos[x/(2+k)l

S is the (scattering) S matrix restricted to the one-
particle sector. While S= —

1 (corresponding to a zr/2

phase shift) at the Fermi-liquid Kondo fixed point,
lSl ( I at the nontrivial fixed points indicating scattering
processes in which one electron goes into one electron
plus one or more electron-hole pairs. From the Friedel
sum rule, the excess electron number in the vicinity of the
impurity is 8%=k(1 —S)/2. In the dilute impurity limit
[19], the retarded self-energy is given by Z =(in;/2zrv)(]
—S), where v is the density of states per spin per chan-

(8)y (, )]/42k —[y (,) —
y (, )]/JZk,

(j)+(p) ' Dj,p ~

(j),(p)

nel and n; is the impurity density. The residual resistivity
is p(0) =3n;(I —S)/2k/r(evF v), i.e. , (1 —S)/2 times the
unitary limit [in agreement with the perturbative result in

the large-k limit, s =fixed]. The leading low-frequency,
co, correction to X is CX'i(iso/Tx) and the leading
temperature dependence of the dc resistivity is p(T)/
p(0) —1~ (T/ Tg) / + '. Note that in the case k =2,
p(0) takes on half the unitary-limit value and the temper-
ature exponent is &, unlike the value near 1 (heuristic ar-
gument by Cox [20]) observed in experiments on

Y~ —,U, Pd3 [3] and unlike Ref. [11].
Green's functions of two-particle operators involve

double-s-wave terms, which show nontrivial behavior and
then various other terms involving higher partial waves,
including cross terms with the s-wave part, which all fac-
tor into products of one-particle Green's functions. Using
Eq. (2) the 1D fermion bilinears consist of four terms:
LL, RR, LR, and RL, involving different kF-dependent
prefactors. Thus the double-s-wave two-particle Green's
function contains sixteen terms, with kF-dependent pre-
factors of the form: exp[ikF(n]r~+nqrq)t, with n; =0,
~ l. All terms involving purely left-moving (or purely
right-moving) fields have the same values as at X~ =0.

We give explicit expressions for the two-channel case
(k =2, s =

& ). In the limit iF!r)ql))ri, rq, Green's func-
tions exhibit boundary scaling dimensions, d, decaying as

The minimum possible value of 5 for an opera-
tor of charge Q, spin j, and flavor "pseudospin" [from the
second flavor SU(k =2) group] jf is [5] —„Q + —,

' j(j
+1)+ —, jf(jf+ I). Thus a logarithmically divergent sus-

ceptibility, corresponding to h, = &, is only possible for a
two-particle operator with (Q,j,jf) equal to (~ 2, 0,0) or
(0,1,0) or (0,0,1). These correspond to the spin-singlet,
Aavor-singlet pair operator, the spin density, and the
pseudospin density, respectively. The spin-triplet pair
(i.e. , Q = +'2) susceptibility is nondivergent.

For k =2, s = &, we find that all the terms involving
three left-moving operators and one right-moving one
vanish at the strong-coupling fixed point (unlike the zero
coupling case), up to corrections dropping ofl more rapid-
ly than 1/z . Thus we only need to specify terms with
two left-moving operators and two-right-moving opera-
tors. The singular part of the Green's function of the
spin density com-es from the double-s-wave part, S(r)
=(]/4' )4'(r)+ . , where 4'(r) =(]/4n)%'(r)t' 'a
x 9' (r);, with

gab
(S'(zi)S (zq)), ;„s= z r]

' [2cos[2kp(ri+rq)]+cos[2kFriq][2+)]/(] —r])]],

where g is the cross ratio:
(z*, —z, )(z, —zq ) 4r, r,
(z 1 z2 )(z I z2) &'F &12+ (r1 +r2)

(12)
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This expression illustrates the universal crossover from
Fermi-liquid form, in the "bulk" limit where r ],r 2

»vFirlqi and hence ri I, to non-Fermi-liquid behav-
ior, in the "boundary" limit, i.e., as g 0. Note that the
spin-density Green's function approaches

26' cos[2kFr|2]/(r (~+ t F r
1 z)

((ttrL ai(z 1)ttrR pj (z I ))(pl (z2)lpR' (z2 )))bound

fo« i,r 2 » i z i
—z 2 i, but approaches

48' cos[2kFri]cos[2krrq]/[vF(r i2) ' (rlr2) ' ]

for vF i r i qi » r i, r2, exhibiting the non-Fermi-liquid ex-
ponent, 1, and consequently a logarithmically divergent
local susceptibility.

Of particular interest [2] is the correlation function of
the pairing geld. The nontrivial piece of the pair two-
point function is

—I/2
1RpRp-

(vFr lp)'+(rl+r2)' ',

1 1 g+3 +(RoRi+RiRo+RiRi)—
2 1

—
g

where R i o
= (I/J2) (8;6g ~ BpSP) are Projectors onto

triplet and singlet channels, respectively (and a similar
expression for R for the flavor part). We see that only
the spin-singlet flavor-singlet channel has a divergent sus-
ceptibility, as mentioned above. Therefore, by Fermi
statistics, the susceptibility of the pairing field
+„(r)+pj(r) itself does not diverge. However, the most
divergent part of the p-wave pairing field is

ikFr'
'Pm'(r)

a 'Ppj (r)
p 3 [yL, ai yR, pj+YL, pj yR, ai]+ ' ' '

ilr' gtr r

which does lead to a logarithmically divergent suscepti-
bility as T 0. If the Kondo interaction is made aniso-
tropic (in spin space) then the S'=0 component of the
triplet pair operator can mix with the singlet pair opera-
tor and hence also has a singular susceptibility. The
5= = + 1 components remain nonsingular.
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