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Exact numerical calculations with Lagrange constraints are used to determine the lowest terms in an
expansion for the two-Skyrmion interaction. The nucleon-nucleon potential which results after semiclas-
sical quantization compares better with the phenomenological Paris potential than do previous calcula-
tions in the Skyrme model which used the product approximation. In particular, the present calculations
show a sizable medium-range attraction in the central channel, a result that is not found with the prod-
uct approximation.

PACS numbers: 21.30.+y, 11.10.Lm, 11.40.Fy, 13.75.Cs

The constants f and e are here taken to be 93 Me& and

4.76 so as to fit the zero-baryon sector [1]. By virtue of
the Goldberger-Treiman relation, this parameter set
guarantees that the long-range part of the potential
—which automatically in the Skyrme model is due to
one-pion exchange —will agree with phenomenological re-

sults. This requires the introduction of finite-N, correc-
tions (N, denotes the number of quark colors) described
in Ref. [1].

The single-baryon solutions of minimum energy have

the hedgehog form

There have been several calculations over the past few
years of the nucleon-nucleon potential in the Skyrme
model [1-5], all of which use the product approximation
to simplify the numerics. With this approximation the
two-Skyrmion potential as a function of the relative an-
gles of orientation between the Skyrmions has a compact
form, and the extraction of the nucleon-nucleon potential
by projection onto asymptotic two-nucleon states is
straightforward. This gives three nonvanishing channels,
the central, spin-spin, and tensor; the latter two compare
well at large and intermediate distances with the phenom-
enological Paris potential [6]. The major inadequacy
previous calculations have revealed is the lack of an
intermediate-range attraction in the central potential.
Although many remedies have been proposed, this result
may not be due to a fault of the Skyrme model. As men-
tioned in the original paper by Jackson, Jackson, and
Pasquier [1], the product approximation, which is not a
solution to the equations of motion, can only be con-
sidered accurate at large distances; and the failure of
these calculations to reproduce the central-range attrac-
tion may simply be the failure of the product approxima-
tion to provide an adequate approximatio
solution. Indeed, the symmetrized produ
tion, which is designed to respect the sym
exact solutions (the simple product app
spects these symmetries only in the asympt
used in a calculation by Nyman and Ri
small attraction was found. (As shown in R
er, this approximation is inadequate at sh
the baryon number becomes ambiguous. )
we go further by studying the two-Skyr
through exact numerical calculations; this
meaningful comparison between the Skyr
phenomenological nucleon-nucleon potenti

We use here the Skyrme model with the
izing term fourth order in derivatives an
term. Expressing the pion field via the
U(x, t) =exp[(i jf„)r . tr(x, t )], the Lagran
the following form:

UH =A exp[i r. rF(r')]A

with 2 a constant SU(2) matrix, r'=r —R, and R a con-
stant spatial vector. Naive semiclassical quantization
consists of promoting the collective coordinates R, the
Skyrmion center, and 4, the orientation in isospace, to
quantum variables. In the c.m. frame, the resulting
quantum states are given by the Wigner S functions:

tit(N) =J2t+ 1X);',(A),

with t =j a half integer and i and s the third components
«app«x~ma- of isospin and spin, respectively. The states of lowest en-

ergy, ) =j= 2, are the nucleon wave functions; states
with p

=j =
2 correspond to the delta.1'

A good description of the low-energy two-baryon
(g =2) sector in the Skyrme model can be attained by
expressing the general field configurations in terms of

"g s'" twelve collective variables [g], which can be taken as a
global translation (the center-of-mass position), the glo-

' " P " ' bal orientations in space and isospace, the spatial separa-
tion, and the relative orientation in isospace. In the
asymptotic limit, where the configurations consist of
well-separated single baryons, these variables may be
reexpressed as the positions r; and orientations A; of the
two Skyrmions. Since these variables are independent in
this limit, quantization yields asymptotic states which are
simply the product of the free nucleon states derived from
the hedgehog solutions. For general 8 =2 configurations,
the energy is independent of the global collective coordi-
nates; these variables describe zero modes. Thus the
eff'ective Hamiltonian which results from the canonical
quantization of these collective variables will involve a
potential which depends on only the separation r, taken
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FIG. 2. The spin-spin term of the nucleon-nucleon potential

Vss(r), with the curves as in Fig. l.
FIG. 3. The tensor term of the nucleon-nucleon potential

Vr(r), with the curves as in Fig. 1.

a =c~. We study configurations with the orientations C
=1, is 2, and iz3. For these orientations, the minimum-

energy solutions have the additional symmetries

U, (x,y, z) =riUz( —x,y, z)zi =rzUz(x, —y, z)r~,

which reduce the calculation to one-eighth of space [9].
The terms in the nucleon-nucleon potential Eq. (5) de-

rived from the calculations for these three orientations
are shown in Figs. 1-3. Also shown are the phenomeno-
logical Paris potential [6] and the results from the
product-approximation calculation of Jackson, Jackson,
and Pasquier [1]. We see a better agreement between the
exact calculations and the Paris at intermediate and short
ranges than was found for the product approximation. In
particular, the intermediate-range central attraction,
missing in the product approximation, is present here.
(We find a similar result for the parameter set of Adkins
and Nappi [13]. The core is pushed further out, and the
well is slightly deeper. ) The behavior at short range for
the present potential is quite different from that derived
from the product approximation and qualitatively similar
to that of the Paris potential. Finally, we remark that a
direct quantitative comparison of the Skyrme and Paris
potentials is not meaningful at short distances without a
knowledge of how the relative Skyrmion mass and mo-
ments of inertia depend on r. For small r, these quanti-
ties are likely to be quite diA'erent from their free values
[14]. An r dependence in the mass can be reexpressed as
a momentum dependence in the potential. Work in this
direction is in progress [15].

To conclude, the present calculations show that even
the basic Skyrme model, through a relatively small

amount of computational eA'ort, with parameters fixed to
the meson sector, and with minimal finite-Ã, corrections,
predicts a nucleon-nucleon potential which is in qualita-
tive agreement with the phenomenological Paris poten-
tial.
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