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Nucleon-Nucleon Potential in the Skyrme Model: Beyond the Product Approximation
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Exact numerical calculations with Lagrange constraints are used to determine the lowest terms in an
expansion for the two-Skyrmion interaction. The nucleon-nucleon potential which results after semiclas-
sical quantization compares better with the phenomenological Paris potential than do previous calcula-
tions in the Skyrme model which used the product approximation. In particular, the present calculations
show a sizable medium-range attraction in the central channel, a result that is not found with the prod-

uct approximation.
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There have been several calculations over the past few
years of the nucleon-nucleon potential in the Skyrme
model [1-5], all of which use the product approximation
to simplify the numerics. With this approximation the
two-Skyrmion potential as a function of the relative an-
gles of orientation between the Skyrmions has a compact
form, and the extraction of the nucleon-nucleon potential
by projection onto asymptotic two-nucleon states is
straightforward. This gives three nonvanishing channels,
the central, spin-spin, and tensor; the latter two compare
well at large and intermediate distances with the phenom-
enological Paris potential [6]. The major inadequacy
previous calculations have revealed is the lack of an
intermediate-range attraction in the central potential.
Although many remedies have been proposed, this result
may not be due to a fault of the Skyrme model. As men-
tioned in the original paper by Jackson, Jackson, and
Pasquier [1], the product approximation, which is not a
solution to the equations of motion, can only be con-
sidered accurate at large distances; and the failure of
these calculations to reproduce the central-range attrac-
tion may simply be the failure of the product approxima-
tion to provide an adequate approximation to the exact
solution. Indeed, the symmetrized product approxima-
tion, which is designed to respect the symmetries of the
exact solutions (the simple product approximation re-
spects these symmetries only in the asymptotic limit), was
used in a calculation by Nyman and Riska [4], and a
small attraction was found. (As shown in Ref. [7], howev-
er, this approximation is inadequate at short range since
the baryon number becomes ambiguous.) In this Letter,
we go further by studying the two-Skyrmion potential
through exact numerical calculations; this allows a more
meaningful comparison between the Skyrme model and
phenomenological nucleon-nucleon potentials.

We use here the Skyrme model with the original stabil-
izing term fourth order in derivatives and a pion mass
term. Expressing the pion field via the SU(2) matrix
U(x,t) =expl(i/f.) - n(x,1)], the Lagrange density has
the following form:
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The constants f, and e are here taken to be 93 MeV and
4.76 so as to fit the zero-baryon sector [1]. By virtue of
the Goldberger-Treiman relation, this parameter set
guarantees that the long-range part of the potential
—which automatically in the Skyrme model is due to
one-pion exchange— will agree with phenomenological re-
sults. This requires the introduction of finite-/N. correc-
tions (V. denotes the number of quark colors) described
in Ref. [1].

The single-baryon solutions of minimum energy have
the hedgehog form

Uy=Aexplit-fF(r)1AT,

with 4 a constant SU(2) matrix, r'=r—R, and R a con-
stant spatial vector. Naive semiclassical quantization
consists of promoting the collective coordinates R, the
Skyrmion center, and A, the orientation in isospace, to
quantum variables. In the c.m. frame, the resulting
quantum states are given by the Wigner 2 functions:

y(N) =V2r+1D{2 (1) ,

with ¢ =j a half integer and i and s the third components
of isospin and spin, respectively. The states of lowest en-
ergy, t=j=1%, are the nucleon wave functions; states
with ¢ =j = 3 correspond to the delta.

A good description of the low-energy two-baryon
(B =2) sector in the Skyrme model can be attained by
expressing the general field configurations in terms of
twelve collective variables [8], which can be taken as a
global translation (the center-of-mass position), the glo-
bal orientations in space and isospace, the spatial separa-
tion, and the relative orientation in isospace. In the
asymptotic limit, where the configurations consist of
well-separated single baryons, these variables may be
reexpressed as the positions r; and orientations A; of the
two Skyrmions. Since these variables are independent in
this limit, quantization yields asymptotic states which are
simply the product of the free nucleon states derived from
the hedgehog solutions. For general B =2 configurations,
the energy is independent of the global collective coordi-
nates; these variables describe zero modes. Thus the
effective Hamiltonian which results from the canonical
quantization of these collective variables will involve a
potential which depends on only the separation r, taken
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here to be along the 3 axis, and the relative isospatial an-
gles of orientation, which can be expressed as Euler an-
gles via the SU(2) matrix C=A]A4,=¢ %2 210572
Since the D functions form a complete set over SU(2) for
integer j, a general form for the two-Skyrmion potential
is given by - i
Vo)=Y X X Vim(DDP(CO).
j=0m=—jn=—j

However, configurations with orientations C differing
only by a rotation about the 3 axis are degenerate in
energy— they are simply related by a redefinition of the 1
and 2 axes in space and isospace [8,9]. Thus the poten-
tial is independent of a—y. Furthermore, we expect
V(r,CT) =V (r,C); that is, that the classical potential is
symmetric under Skyrmion interchange 4,<>A4,. We
thus arrive at the following form for the two-Skyrmion
potential:

oo

VO =3 3 Vi@ LD+ DDy (O],
Jj=0m=0
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The nucleon-nucleon potential is then obtained by sand-
wiching Eq. (2) between the asymptotic two-nucleon
states given by

w(N,N2) =2D{2, (4D, (4,) . (3)
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with the central potential V¢ =V, the spin-spin poten-
tial Vss =25(V 0+ V11)/243, and the tensor potential Vr
=250V 10—V 11)/486. As in Ref. [1], we have multi-
plied Vss and V7 by the factor (N.+2)%/N2=25/9,
which is thought to arise as a finite-/V, correction.

The calculations are performed by discretizing the
equations of motion on a 20x20x%40 spatial lattice and
relaxing from an initial B =2 configuration. Determining
the separation r is nontrivial since the soliton centers are
not well-defined quantities [11]. Here we take the sepa-
ration to be twice the rms radius of the baryon number
density B°,

1,1 3200
7" dexxfB(x).

For point particles,
ﬁo(X) =53(X+ ';‘ ré;) +53(X - ;‘ ré3) s

and this reduces to the usual definition of the separation
r=|r;—r2|. The calculations are performed for different
values of r which are fixed by adding to Eq. (1) a
Lagrange constraint [12]. For a given orientation C, the
fields in the z > 0 and z <0 halves of space are related by
the rotation defined by C. For each C there is a vector il

Since DL, (C) =X, D, (A1) DY), (A4,), one finds that

terms with j=2 in Eq. (2) can contribute to the nu-

cleon-nucleon potential only through intermediate states.
The product approximation, which may be written

Up=A\Un(x+ $ré) A AUn(x— L ré3) Al

generates a potential consisting only of terms with j <2
[10]. Previous calculations have shown, however, that the
coefficients V,,, are small with respect to V,, and Vo,
and that the potential derived in the product approxima-
tion is fitted well by truncating Eq. (2) at j=1 [1]. This
means that one need then perform calculations for only
three different orientations C in order to determine the
two-Skyrmion potential. For exact calculations this
would be especially helpful, and so for the present we as-
sume that the potential is well parametrized by

V(r,C)=Vaor)DR(C)+V 6:DEY(C)

+VaMDY@O+29 0. @)
The main purpose of our investigation is to determine the
reliability of the product approximation in approximating
the two-Skyrmion solutions, and assuming the form Eq.
(4) is sufficient for this goal. Sandwiching Eq. (4) be-
tween the states in Eq. (3) then gives

(5)

with R;(n) representing a rotation of m about the fi axis
[8]. Configurations with fi’s related by a rotation about
the 3 axis are degenerate in energy; so we can restrict
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FIG. 1. The central part of the nucleon-nucleon interaction
Vc(r) for the present calculations (solid line), the Paris poten-
tial [6] (dashed line), and the product approximation [1] (dot-
ted line).

perpendicular to €; such that C(z-A) =(z-A)C", and the
field solution has the symmetry

Uy(x) =C(z-2)U(R;(x)x)(z-A)CT,
315
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FIG. 2. The spin-spin term of the nucleon-nucleon potential
Vss(r), with the curves as in Fig. 1.

n=¢,. We study configurations with the orientations C
=1, it,, and it3. For these orientations, the minimum-
energy solutions have the additional symmetries

U,(x,y,z) =0, Ul (=x,y,2)1) =,U(x,—y,2)72,

which reduce the calculation to one-eighth of space [9].

The terms in the nucleon-nucleon potential Eq. (5) de-
rived from the calculations for these three orientations
are shown in Figs. 1-3. Also shown are the phenomeno-
logical Paris potential [6] and the results from the
product-approximation calculation of Jackson, Jackson,
and Pasquier [1]. We see a better agreement between the
exact calculations and the Paris at intermediate and short
ranges than was found for the product approximation. In
particular, the intermediate-range central attraction,
missing in the product approximation, is present here.
(We find a similar result for the parameter set of Adkins
and Nappi [13]. The core is pushed further out, and the
well is slightly deeper.) The behavior at short range for
the present potential is quite different from that derived
from the product approximation and qualitatively similar
to that of the Paris potential. Finally, we remark that a
direct quantitative comparison of the Skyrme and Paris
potentials is not meaningful at short distances without a
knowledge of how the relative Skyrmion mass and mo-
ments of inertia depend on r. For small r, these quanti-
ties are likely to be quite different from their free values
[14). An r dependence in the mass can be reexpressed as
a momentum dependence in the potential. Work in this
direction is in progress [15].

To conclude, the present calculations show that even
the basic Skyrme model, through a relatively small
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FIG. 3. The tensor term of the nucleon-nucleon potential
Vr(r), with the curves as in Fig. 1.

amount of computational effort, with parameters fixed to
the meson sector, and with minimal finite-/V,. corrections,
predicts a nucleon-nucleon potential which is in qualita-
tive agreement with the phenomenological Paris poten-
tial.
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