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Split Shock Waves from Molecular Dynamics
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We show that the generation and evolution of split shock waves resulting from a dissociative po-
lymorphic phase transition can be modeled using molecular-dynamics (MD) simulations. A model 2D
semi-infinite molecular solid, driven with a piston, exhibits both single and split shock waves depending
on the piston velocity. The results obtained from these MD simulations are in excellent agreement with
continuum theory. These results—explicitly treating fewer than 5000 atoms— demonstrate that MD
simulations provide a promising tool for studying the interplay between shock waves and polymorphic

phase transitions.

PACS numbers: 62.50.+p, 47.40.Nm, 82.40.Fp

As early as 1956, Bancroft, Peterson, and Minshall re-
ported experimental data which demonstrated that po-
lymorphic phase transitions in iron can be produced by
dynamic shock-wave loading [1]. Following their dis-
covery, shock-wave techniques combined with static mea-
surements were used to determine the high-pressure
phase diagram of iron. Since then many other shock-
induced phase transitions have been profitably studied
[2]. A notable example is the shock compression of
graphite or soot to produce diamond [3]. An important
property of these shock-induced transitions is the accom-
panying shock-wave splitting that may occur. Shock-
wave splitting led to the original discovery of these transi-
tions [4] and continues to be exploited in their study [5].

Theories of shock-induced transitions have so far con-
centrated on relating static to dynamic measurements,
with little if any attention given to simulating these
dynamically induced transitions using molecular dynam-
ics (MD). This state of affairs is surprising, because
shock waves occur on such a short time and length
scale— traversing typically 50 A or more in a pico-
second—they are often ideal for MD studies. Indeed,
MD methods have not only been successfully used to
model shock waves in systems without polymorphic tran-
sitions [6], but also to model pressure-induced po-
lymorphic transitions under static but not dynamic iner-
tial confinement [7]. Therefore, this method would seem
a promising tool for studying the interplay between shock
waves and the polymorphic transitions they can induce,
provided these transitions occur on a time scale accessible
to the simulations.

In this Letter we report results from MD simulations
for a 2D diatomic molecular solid which exhibits a
shock-induced phase transition and a concomitant split
shock wave. Remarkably—even when the transition, ac-
companied by a large volume change, is present— we find
that the results of these nanoscale simulations are in ex-
cellent agreement with the Rankine-Hugoniot relations
from continuum theory that relate the steady-state mac-
roscopic flow variables across the shock front.

The 2D model used in these studies is based on many-
body Tersoff-type potentials [8] which represent the total
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potential energy of a collection of N atoms as

N N
V=Z_ glf(‘(rij)[VR(r,'j) —BiiValri))1+Veaw(ri), (1)
i j>i

where the parameters and functions used in this expres-
sion are given in Table I. The molecular bonding portion
of the potential consists of a repulsive, Vg, and an attrac-
tive, V4, term, both modeled using generalized Morse po-
tentials. The bond order function, B;;=(B;;+ B;)/2, in-
troduces many-body effects into the potential by modify-
ing V4 according to the local bonding environment. Here
Eij is chosen to favor a valence of one, insuring that
without the van der Waals bonding term V,gw the ground
state at zero temperature and pressure is a collection of
N/2 independent diatomic molecules. For the parameters
given in Table I, each of these diatomic molecules has a
binding energy of 5 eV and a vibrational frequency of
1682 cm ! at an equilibrium bond distance of 1.0 A, all
similar to molecular oxygen. Inclusion of V,yw causes
this system to condense into a diatomic molecular solid
which in two dimensions has a crystalline binding energy
of 0.04 eV per molecule, a distance of closest approach
between atoms in nearest-neighboring molecules of 3.3 A,
and a solid-state speed of sound of 1.9 km/s, all well
within physical norms.

With increasing hydrostatic pressure this diatomic
molecular solid (DMS) becomes unstable with respect to
a close-packed solid (CPS) at a 2D pressure of about 1
eV/A? which corresponds to an effective 3D pressure [9]
near 40 GPa. The density of this CPS for pressures im-
mediately above the transition relative to the density of
the initial DMS at near zero temperature and pressure,
pcps/ppms, is 2.5. Accompanying this transition the
nearest-neighbor interatomic distance dnn increases by
about 20% due primarily to a decrease in B;; with an in-
creasing number of nearest neighbors. All these proper-
ties of the model make this DMS to CPS transition simi-
lar to the dissociative transition reported in diatomic
molecular solids of iodine [10] and bromine [11]. This
transition occurs at 21 GPa in I, and 81 GPa in Bry, lead-
ing to an increase in the overall relative density, pcps/
ppoms, of 1.7 for I, and 2.3 for Bry, and an increase in
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TABLE 1. The components and parameters used in Eq. (1). In the simulations each atom

was assumed to have the mass of V.

Ve(r) =ID./(S — ]lexpl —av2S (r —r.)]
Va(r)=I[SD./(S — 1)]explav2/S (r —r.)]

Bij= [l +sz SeCripdexplm (rij — rix )]] o

#=i,j

1, r<2
il +coslz(r—2)1}, 2=<r<3
0, 3<r

fo(r)=

0, r<1.75

Po+rlP +r(Py+rP )1,
Veaw(p) =1 0 0 TR T I

0, 7.32=<r

D,=5.0eV
S=1.28
a=27A""!
re=1A

G=5.0
m=225A""!
n=0.5
€=5.0x10"3eV
c=2988 A

Po=0.4727eVA !
Pi=—0.6996eVA !
P>=0.3364eVA !
P3=—0.0520eVA ™!

1.75<r <291
4el(o/r)'?—(o/r)°], 291 <r<7.32

dnn of around 15% for both materials. The model, how-
ever, predicts that 50% of the overall density change
occurs at the transition, while in I, and Br; the change is
6%. Much of this difference arises because the ratio of
the van der Waals to diatomic bond length, R, in the
model is considerably larger than the corresponding ratio
in either I, or Br,. We have not attempted to alter this
feature of the model because a larger R is a realistic
feature of other molecular solids. This larger change in
density at the transition should also increase the relaxa-
tion time necessary to achieve local equilibrium and
hence will provide an even more severe test of the ability
of MD to model such shock-induced dissociative transi-
tions.

Shock waves in the MD simulations are produced by
driving the free edge of the molecular solid initially at
rest at near zero temperature and pressure with a rigid
layer of atoms moving at a constant velocity. The dy-
namics of the remaining atoms are then propagated by
integrating Hamilton’s equations of motion using a Nord-
sieck predictor-corrector method with a variable time step
[12]. Various shock velocities are obtained by starting
with different initial piston velocities leading to different
final shocked states. During the simulations, cyclic
boundary conditions are enforced perpendicular to the
direction of shock propagation. The results reported
below were all obtained by explicitly treating the motion
of fewer than 5000 atoms for less than 20 ps.

Snapshots of the simulations for piston velocities of 2.0,
5.0, and 8.0 km/s (from top to bottom) are given in Fig.
1. The location of the resulting shock-wave fronts are
clearly visible as sharp changes in density between adja-
cent regions. The shock front velocities calculated from
the MD simulations were found to approach a constant
time-averaged velocity in anywhere between 2.4 and 12
ps, with the longer times corresponding to simulations

which had a piston velocity just above that needed to in-
duce the split shock wave. These averaged front veloci-
ties are plotted as a function of the piston velocities in
Fig. 2. The solid lines in Fig. 2 are polynomial fits to the
plotted points. A cubic polynomial was used to fit the
data for less than or equal to 3.0 km/s, an average was
used for the almost horizontal data, and a linear fit was
used for the remaining data. Continuum theory predicts
that in the limit of infinitesimal piston velocities the shock
velocity should approach the speed of sound in the
unshocked material [13]. The shock velocity in this limit
extrapolated from the cubic fit to the MD data is 1.8
km/s, which is in good agreement with the longitudinal

FIG. 1. Snapshots of the simulations for piston velocities of
(a) 2.0, (b) 5.0, and (c) 8.0 km/s. The shock waves are propa-
gating from left to right.
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FIG. 2. Velocities of the shock waves, D, calculated from the
MD simulations as a function of the piston velocity Up.

speed of sound in the unshocked material, 1.9 km/s, cal-
culated using a different method [14].

As can be seen from Fig. 2, at piston velocities below
3.0 km/s only one shock wave is present [Fig. 1(a)l.
When the piston velocity exceeds about 3.0 km/s a po-
lymorphic transition accompanied by a split shock wave is
observed [Fig. 1(b)]. In the range of piston velocities
where a split shock wave is present, the velocity of the
first shock wave remains near constant at 11.5 km/s while
the velocity of the second front continues to increase with
increasing piston velocities. At a piston velocity of 7.1
km/s or greater the velocity of the second shock wave
exceeds that of the first, and only the second wave
remains [Fig. 1(c)]. Across this remaining second front
the molecular solid at initial conditions transforms direct-
ly to the close-packed solid. All of these results are in
agreement with continuum theory [13] as we now show.

The continuum theory of planar shock waves at steady
flow conditions leads to the Rankine-Hugoniot relations
[15]:

D=Vol(P—Py)/(Vo— V)12, ()
u,=(Vo=VIP—Py)1'"2, (3)
e(P,V) —e(Po, Vo) =Pu,Vo/D—u}/2, 4)

in the reference frame where the material preceding the
front is stationary. Assuming the equation of state giving
e(P,V) is known, these relations determine the locus of
all final states defined by the specific volume V, pressure
P, and flow velocity u, that can be reached by shock
compression of the initial state characterized by Vy, Py,
and the shock velocity D. Equations (2) and (3) can then
be used to eliminate u, and D from Eq. (4) leading to a
curve in P-V space, P=H(V;VyPy), known as the
Hugoniot. The Hugoniot for the model is given in Fig. 3.
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FIG. 3. The Hugoniot for the model system. The solid cir-
cles O, T, and E correspond to the initial state, the onset of the
transition, and the point such that line OE just touches the
Hugoniot at T, respectively. The diamonds A, B, and C are the
final states for the piston velocities used to generate Figs. 1(a),
1(b), and 1(c), respectively.

The diamonds in Fig. 3 are the values of V and P com-
puted directly from the simulations [16] at locations ap-
proximately 20 A behind the shock front after the veloci-
ties of these fronts have stabilized. The solid curves in
Fig. 3 are computed by using Egs. (2) and (3) to convert
the D vs Up solid curves in Fig. 2 to the P vs ¥ Hugoniot
relationship. The close agreement between these results
confirms that near steady flow conditions have been
reached over the entire range of piston velocities studied.
The level of agreement depicted in Fig. 3 also shows
that the occurrence of split shock waves in the simula-
tions can be understood using the first two Rankine-
Hugoniot relations and the computed Hugoniot [1,2,13].
First, consider a final state such as A4 shown in Fig. 3
which corresponds to the piston velocity used to generate
Fig. 1(a). This final state lies between the initial state
O(Py,Vy) and the point T(Pr,Vy) on the Hugoniot
where the transition begins. For such a final state a
straight line (Rayleigh line) such as OA4 shown in Fig. 3
can be drawn from the initial to final state without other-
wise intersecting the Hugoniot. Therefore, there will be
only a single shock wave present in the material. This
conclusion follows from Eq. (2) which implies that the
slope of the Rayleigh line OA is proportional to the shock
velocity and the observation that P is a nondecreasing
function of the shock compression. Because A4 lies be-
tween O and T this single shock wave compresses and
heats the undisturbed material and starts it flowing but
does not induce a phase transition as depicted in Fig.
1(a). Also, because there is only a single shock wave
present, u, coincides with the piston velocity Up so that
Eq. (3) implies that such an ordinary shock wave will al-
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ways result provided Up < UF=[(Vo— V) (Pr— Po)]1'2
== 3.0 km/s.

Next, consider a final state such as C shown in Fig. 3
which corresponds to Fig. 1(c). This final state lies
beyond this point £ shown in Fig. 3; E is defined as the
intersection of the Hugoniot with the Rayleigh line OE
that just touches the Hugoniot at the point 7. Again
there will be only a single shock wave present in the ma-
terial because the Rayleigh line OC, shown in Fig. 3, can
be drawn without otherwise intersecting the Hugoniot.
Here, however, C lies beyond T so that the transition
takes place across this single front as depicted in Fig.
1(c). Also, Eq. (3) now implies that such a final state
will always result provided Up>UF=[(Vo—Vi)(Pg
—P)1'"2=7.1 km/s.

Last, consider a final state such as B shown in Fig. 3
which corresponds to Fig. 1(b). This final state lies be-
tween 7 and E and hence is generated by a piston veloci-
ty between UF and UE. For such a final state a single
Rayleigh line cannot be drawn from O to B without oth-
erwise intersecting the Hugoniot. Therefore, the shock
wave splits into two independent waves moving at dif-
ferent speeds. The first shock wave starts the material
moving, compressing and heating it to the point of transi-
tion, 7, while the transition takes place across the second
front bringing the material to the final state B. Equations
(2) and (3) imply that the first shock propagates with
respect to the material immediately behind it at a velocity
given by D —u, =V7[(Pr—Po)/(Vo—V7)1"2, while Eq.
(2) implies that the second wave propagates into this
compressed, heated, and moving material with a velocity
given by V7 [(Pg — P7)/(V+— V)12, Because B lies be-
tween T and E the slope of the line OT must exceed the
slope of the line 7B and hence these two waves separate
as depicted in Fig. 1(b). This analysis also demonstrates
why when split shock waves are present the velocity of
the leading wave will always be pinned at Vo[(Pr—Py)/
Wo—Vr)1"2=11.5 km/s.

These results establish for the first time that MD simu-
lations can be successfully used to model such complex
dynamic phenomena as split shock waves caused by a po-
lymorphic phase transition. Given the relatively small
size ( <5000 atoms) and short times ( < 20 ps) needed to
achieve near steady flow conditions in our 2D model, a
wide range of related phenomena should soon become ac-
cessible to MD simulations. New numerical algorithms
that can follow the dynamics of up to 10 atoms on paral-
lel computers [17] should soon make possible 3D simula-
tions using realistic many-body potentials that, for exam-
ple, could lead to a better understanding of the significant

differences between static [18] and shock [19] results for
solid Nz.
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