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Two-Frequency Wiggler for Better Control of Free-Electron-Laser Dynamics
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We study the physics of a free-electron laser based on a "two-frequency" undulator (TFU) which in-

duces large nonlinear effects, especially on the spectral dynamics. These effects are analyzed in an ex-
tended formalism where the spontaneous emission, the low-gain regime, and the strong-field saturation
regime are studied. Numerical simulations show that an optimized TFU generates a laser field having
both a large extraction efficiency and a narrow spectrum.

PACS numbers: 42.55.Tb, 52.35.Mw

In the physics of the high-power Compton free-electron
laser (FEL), linear mechanisins are presently well under-
stood, but much remains to be done in the domain of non-
linear regimes. As in a large class of physical situations
(traveling-wave tubes or Langmuir waves), complex be-
haviors are observed when an electron beam is strongly
coupled with a multifrequency electromagnetic field.
Such high-power systems present strong spectral broad-
ening mechanisms. This has been experimentally ob-
served in the FEL context where technical solutions have
been impleinented [1]. As additional technological de-
vices may result in severe drawbacks like damage thresh-
old or nontunability, it is worth trying to optimize the
FEL dynamics in order to get both a strong efficiency and
a narrow spectrum.

In view of this, we focus on the optimization of the en-
velope S(z) of the wiggler magnetic field. Classically, a

wriggler is tapered with an adiabatic decreasing of the
magnetic field to compensate the energy loss of the elec-
trons. Such devices require a simple phase-space struc-
ture [2] which is not consistent with a large-spectrum
FEL. As high-power FEL's are characterized by strong
spectral broadenings [3], adiabatic taperings may then
become inefficient. To investigate a larger class of taper-
ing function 8, we consider a first generalization provid-
ed by the possibility to introduce a second frequency in

the wiggler magnetic field. By deeply modifying the elec-
tron dynamics, a two-frequency undulator (TFU) alters
the nature of the linear regime and of the asymptotic
equilibrium.

Let us consider a plane wiggler magnetic field with a
vector potential given by
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where k„~ =2m/k„~ and A, 2=2+/k z are the two periods
of the TFU. %e assume that the beating wavelength
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is long compared to X l and X 2, so that sf is a small pa-
rameter. As the second frequency induces a slow modu-
lation of the first frequency taken as a carrier, a TFU can
be designed by varying the magnet amplitudes of a one-
period wiggler. Considering a wiggler parameter a and
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where G„=a„exp(i iirk„) is a bunching function.
The main new characteristics are the following.
First, Eq. (1) exhibits a slow modulation term cos(kbz)

which persists after the smoothing operations. To re-
trieve the usual notation, we introduce the wiggler pa-
rameter K as 2K =a

~ +a2 and the detuning function:

v=k (
—(kL/2y2)(I+K').

The usual FEL physics rests on the idea that the detuning
parameter is close to zero. The modulation term then be-
comes the driving term in Eq. (1).

Second, in Eqs. (2) and (3), the two terms G ~
and G2

are associated with the wiggler periods A, l and A, 2, re-
spectively. Thus, each electron is characterized by the
phase displacements

yk„=(k„+k „)z—ro„t, u =1,2,

a small c, the amplitudes a~ and a2 are given by a~
=a (1 —e, )=1, ay=a„e, /(I —ef)=0.1. In this paper,

we investigate the effects induced by variations of the
small-value parameters e, and cf. The TFU phase dis-
placement p is equal to zero and its optimization is still
open.

%e assume a continuous electron beam characterized
by a density per unit of length p, . Each electron is

specified by its energy mc y and its longitudinal position
=(kl +k„~)z —cuI t, defined [2] as the phase displace-

ment between the electron transverse oscillation and the
light phase. %e take advantage of the continuous-beam
limit to expand the laser vector potential Al as a discrete
Fourier sequence

mc @ (z)
Al (z =z —cr, z) = g " e' "'.
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The laser frequencies m„=ck„are periodically distribut-
ed around the central frequency rol. =ckl, ro„=(l+n/
1V)rol, where N is a large integer.

Following the classical technique, the equations of
motion for a TFU are readily obtained:
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between the laser frequencies ro„=k„c and the motions
induced by the wiggler period A, „. These variables are a
trivial linear combination of y and z.

As a first investigation of the TFU physics, we analyze
two weak-field regimes, the spontaneous emission and the
linear regime.

In the weak-field limit, the electron energy y is con-
stant and the electron trajectory is deduced by a straight-
forward integration. Starting from the classical formula
giving the radiation power emitted by an accelerated
charged particle [4], we obtain after some smoothing pro-
cedure

comes the driving term of Eq. (5). This term arises be-
cause a TFU modulates the longitudinal electron motion.
When the beating-wave period is comparable to the
wiggler length, the modulation clearly becomes a non-
trivial term. First, it is a slow term which is not removed
by smoothing procedures. Second, since we consider a
full beating period, it is not an adiabatic change of the
dynamics. Third, its intensity may be large, even for
small c,. This modulation term may be analyzed by ex-
panding the resonance function I, with the help of
integer-order Bessel functions. This yields a form factor

2
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x =(v+ nkb)L„/2,

where I is the radiated energy in the solid angle dQ at
the frequency co and N is the number of wiggler periods.
Equation (4) is very close to the formula obtained for
standard wigglers [5]. Basic new features appear in the
definition of the spectral factor X:

X =(a~I,+aql„q, )/K, -
(5)
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L

with a= —Bk ~/ks and 6=a~aq/(I+K ).
The function X is a generalization of the standard res-

onance shape sin(x)/x, which is recovered when c,cf =0.
As a first diff'erence, L is a sum of two terms a]I, and
a2I, —I,-„corresponding to the radiation associated with
the two wiggler periods. However, as a2«a], this is not
an essential feature. The second difference is more fun-
damental. In the usual case, a=0 and ~l, ~

simply is a
sin(x)/x function reducing to a Dirac signal for infinitely
long wigglers. In this case, the maximal radiation is ob-
tained for v=O with a width close to 2//L„. A TFU in-
duces a modulation term proportional to a which be-

which is a succession of equidistant peaks with a width
equal to 2/L„. The radiated frequency associated with
each peak is obtained by writing v ~ nkb =0:

co=c[2y /(1+K )]k„~(1T-ncf) . (6)
When a =0, only one peak [J„~o(0)=0] appears. As a
increases, the n =0 peak is rapidly overcome by the other
peaks, n =1,2, . . . .

Three situations are possible, depending on the relative
values of the width 2/L and the distance kb between
peaks. When L„«ks, we observe only one peak [Fig.
1(a)] which is characteristic of a classical wiggler. If

A. b «L„, Fig. 1(c) shows three well-defined peaks with a
usual shape because couplings are not possible between
remote frequencies. when L =kb, complex interfer-
ences occur between the different peaks [Fig. 1(b)].
From this, one may conjecture that a TFU basically
modifies the FEL dynamics when the beating-wave period
and the wiggler length are close.

By expanding Eqs. (1) and (2) using a time-dependent
perturbative technique, we compute the weak-field gain
for a TFU. The quantitative analysis of the gain formula
is similar to the study of the spontaneous emission, since
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FIG. l. Spectral form factor ~X~' of the spontaneous emission for three different magnetic modulations. When the beating-wave
period is close to the wiggler length (b), we get a complex gain curve because of interference phenomena.
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the expression depends on the same form factor L up to
some derivative.

By a direct computation, we verify the Madey theorem:
The mean-square first-order variation (y() (and the
second order (y2)) of the electron energy is proportional
to the spontaneous radiated energy (and the gain). In
addition, the weak-field gain is proportional to the gam-
ma derivative d~ of the spontaneous radiated energy, i.e.,

It is worth noticing that, in a TFU, the form factor
L depends upon y through the variables v and a, so that

dy =By By+ Bg
2(v —k ))

r b

This shows that the gain curve for a TFU is a sequence
of equidistant peaks governed by Bessel coe%cients, with
possible complex interferences when L =kb. This mul-

tipeak behavior is an essential new feature, since diA'erent

wavelengths may be above the oscillation threshold. By
optimizing the TFU, it is possible to select the lasing
peak. One can expect that peaks characterized by large
detuning parameters lead to new FEL mechanisms.

As a second investigation of the TFU physics, we study
the nonlinear behavior of the FEL. As the saturation is a
very complex multifrequency equilibrium even for a stan-
dard wiggler, we propose (i) a qualitative interpretation
of the electron dynamics in the presence of a constant
monochromatic laser field and (ii) a quantitative analysis
based upon a full simulation of the multifrequency laser
dynamics.

Assuming a constant electric field 6, the saturation in a
standard wiggler is due to the oscillation of bound elec-
trons at the synchrotron frequency A:

B,'y —n'sing=0, with n'=(k/2y')(I+K')| a( . (7)

For a TFU, the same derivation leads to a far more com-
plex equation:

B,'y —n '[I + icos(kbz) l [sing+ (ap/a i ) sin(y —
kbz )]

=(k/2y')(I+K')8kb sin(kbz) . (8)
The above equation is mathematically interpretable as

a pulsed pendulum equation with nonconstant coefti-
cients. When kb is small compared to 0, Eq. (8) leads to
an adiabatic change of the electron trajectories. At satu-
ration, the synchrotron period 2ir/0 is roughly equal to
the wiggler length. Hence, for a beating-wave period
close to the wiggler length (0=kb), the coefficients of
Eq. (8) change at the same rate as the orbit period. This
clearly shows that Eq. (8) is a nonadiabatic generaliza-
tion of Eq. (7). It is no longer possible to provide a sim-
ple analysis of the phase-space structure since diAerent
electron trajectories cut each other.

The first noticeable distinction between Eqs. (7) and
(8) is the forcing term of Eq. (8), which does not depend
on the laser-field amplitude. This term arises from the
longitudinal electron velocity modulation induced by a

TFU. It may become the driving term of Eq. (8) since its
amplitude, close to aqa~k„~kb, can be larger than 0 .

A second important difference appears when Eqs. (7)
and (8) are linearized. In the standard case, this is the
equation of an oscillator with frequency A. In a TFU,
the linearized equation is a Mathieu equation which
presents many resonant points in the phase space, either
stable or unstable. Simulations of Eq. (8) show that the
usual resonant electron [2] is no longer stable, so that lo-
calized trajectories disappear.

In a TFU, the electron trajectories present a stochastic
behavior in phase space, even with a monofrequency
laser. This means that the synchrotron motion is dislo-
cated because the TFU physics obey nonconstant-coef-
ficient diAerential equations which behave like Mathieu
equations. A TFU modifies the sideband generation,
since it destroys the collective synchrotron motion which
amplifies the sidebands coq ~ O. A direct computation of
this effect is not possible due to the complexity of Eq. (8).
So, we have developed a full numerical simulation, taking
into account both multifrequency laser dynamics and
magnetic modulation. The code written for this purpose
works in the continuous-beam limit from noise up to satu-
ration. For a standard wiggler, simulations of that type
have shown that a high-power FEL presents a large spec-
trum equilibrium with a relative width roughly equal to
the extracted efficiency [3].

A TFU can lead to large efficiencies despite complex
electron trajectories which induce nontrivial modification
in the sideband generation and, then, in the spectral evo-
lution. To investigate this point, we have performed a
systematic mapping in the (b„by) plane for b~ ranging
from 0 to 4% and ~ from 0 to 30Vo. The main FEL pa-
rameters are close to those of the LANL experiment [1].

By optimizing the laser brightness (ratio of the effi-
ciency to the spectral width), we get b, =17.5% and
bI=3.5%. This means that the beating-wave period (0.78
m) has the same order of magnitude as the synchrotron
period which is close to the wiggler length (I m). The
comparison between the behavior of this TFU and a stan-
dard wiggler is shown in Fig. 2. The TFU simulation ex-
hibits a sharp spectrum with a mean width in the range of
0.2'. The extracted e%ciency is larger than 4' and is
remarkably close to the e%ciency obtained with a
monofrequency laser simulation.

These simulations prove the possibility, for a high-
efficiency FEL, to inhibit the sideband generation and
then the spectral broadening for a large number of round
trips (typically 1000 or 2000). However, some funda-
mental issues remain open since we cannot present a
definitive interpretation of this sideband suppression that
goes beyond the above qualitative arguments. A nonnu-
merical study of the asymptotic FEL behavior would be
required to check if sidebands are suppressed or only de-
layed.

In summary, facing the complexity of nonlinear equi-




