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Transitions between Patterns in Thermal Convection
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We present experimental studies of the transit1ons between conduction, hexagons, and rolls in non-

Boussinesq convection of gaseous CO& in a cylindrical cell of radius-to-height ratio 86. Except for the
transition from conduction to hexagons, transitions occur when the two states involved have nearly the
same value of a generalized potential rather than at the stability limits. Conduction gives way to hexa-
gons via the propagation of a front connecting the two states, while the transitions between hexagons and
rolls are facilitated at the cell walls which appear to nucleate the minority state.

PACS numbers: 47.20.8p, 47.25.Qv

Transitions and competition among patterns of diAer-
ent symmetries are fundamental problems in nonequilib-
rium systems. Convection in a horizontal fluid layer sub-
ject to a vertical temperature gradient is particularly well

suited to their study. Near the onset of convection, roll,
hexagonal, triangular, and square patterns can exist, and
bistability and tristability can occur depending on the
particular experimental situation [1].

An example amenable to detailed experimental and
theoretical study is convection of a Auid with tempera-
ture-dependent properties, known as non-Oberbeck-
Boussinesq (non-OB) convection. Bistability and hys-

teretic transitions between conduction and hexagons and
between hexagons and rolls are predicted theoretically
[2]. While the latter have been investigated experimen-
tally to some extent [1,3-6], the hysteresis in the transi-
tion between conduction and hexagons has been studied
[3] only without Aow visualization, and in a parameter
range where the theory is only qualitative. In a recent ex-
periment [4-6] with a cylindrical cell of aspect ratio
I =20 (radius/height), the hysteretic transition between
hexagons and rolls was dominated by competition be-
tween the two patterns. Quantitative agreement with

theory [2] was not found; incorporating finite-size eA'ects

did not resolve the discrepancies [6].
In this Letter, we report high-resolution experimental

results for non-OB convection in a much larger cylindri-
cal cell (I =86) than had been used previously. Near on-

set, we measured the size of the small hysteresis loop be-
tween conduction and hexagons. Above onset, we ob-
served a defect-free hexagonal pattern containing approx-
imately 5000 convection cells. We found that the transi-
tion from perfect hexagons to rolls and vice versa is only
very weakly hysteretic. It occurred when the two states
had nearly the same value of a generalized potential de-
rived from amplitude equations [2,7-9], instead of being
triggered by instabilities. Within the stability regime of
rolls we observed stable rotating spirals. We did not ex-
pect the latter phenomenon, and it is not understood
theoretically.

The experiment was performed in a cylindrical cell of
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FIG. 1. Convective heat current vs s for our experimental
conditions. The inset is the region near onset. Absolutely
stable solutions are shown as solid lines, metastable solutions as
dotted lines, and unstable solutions as dashed lines. The ther-
modynamic thresholds cT and cT, to be defined in the text, are
located where the dotted and solid lines join. The shadings and
the arrows indicate the experimentally observed transition re-

gionss.

diameter D =8.941 + 0.001 cm and height d =0.0520
+ 0.0005 cm. The bottom of the cell was a 0.64-cm-
thick silver disk with a flat mirror surface. The top was a
flat 0.32-cm-thick sapphire. The cell height varied less
than +0.5 pm over the central 80% of the cell area, as
measured interferometrically. The lateral wall was made
of Macor [10,11]. The cell was horizontal within
+ 8X10 rad and filled with CO2 at a pressure of
21.8%-0.1 bars controlled to ~0.1 mbar. The vertical
thermal diA'usion time r, , =d /tc = 0.8 s (tc is the thermal
diffusivity). The bottom-plate temperature was regulated
to ~0.2 mK. The top-plate temperature was held con-
stant at 12.84+ 0.05 C and regulated to + 5 mK by cir-
culating water. We found the critical temperature dif-
ference to be h, T, =29.026~0.005 K; the theoretical
value estimated from the Rayleigh number R at its criti-

3078 1991 The American Physical Society



VOLUME 67, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NOVEMBER 1991

cal value R, [12], the height, and the Iiuid properties is
2g.55+ 1.0 K. We resolved steps in s=R jR, —

1 as
small as 3x10 and visualized [13] patterns with the
shadowgraph technique.

Stability analysis for a non-OB Iiuid [2] leads to the di-
agram of Fig. 1, which shows the square root of the con-
vective heat current j"""vs c. At onset, convection starts
via a subcritical bifurcation to hexagons. For c, ~ c~ 0,
both hexagons and conduction are stable. For 0~ c~ e„,
only hexagons are stable, while for e, ~ e~ sb both hexa-
gons and rolls are stable. For ~~ cb, only rolls are stable.
Since the midplane temperature changed with the applied
AT, the fiuid properties varied [14]. Consequently, the
predicted thresholds c„c„etc., also varied as shown in

Fig. 2. It is clear that cb, where hexagons lose stability to
rolls, was not approached in this experiment.

On increasing h, T quasistatically, we observed a transi-
tion from conduction to hexagons in a small patch at a
preferred site. Figure 3(a) shows a shadowgraph picture
of a part of the convection cell immediately after the ap-
pearance of the hexagons. Dark corresponds to warm
upliow and bright to cold downliow. As shown, the hex-
agonal patch grew by a six-faceted, moving front. The
three independent roll states, which in superposition give
the hexagonal structure, are observable. After about
750m, , the front came to a halt and the stable pattern
shown in Fig. 3(b) was reached [15]. We can explain the
final size by a temperature gradient [11] near the side,
and by slight variations in the cell height, since R
~d h, T. On decreasing h, T quasistatically, the patch of
hexagons shrunk to the pattern of Fig. 3(c), which disap-
peared after reducing ~ further by 3x10 . The orienta-
tion of the hexagonal pattern appearing at onset changed
from one experimental run to the next.

Near onset the flow can be described by three coupled
amplitude equations [2,7-9]. The complex amplitudes
AI„AI,and 8„,describe slow variations of modulus and

phase of periodic roll solutions [2] with wave vectors
ql„ql,q„,with Pq; =0 (i =k, l, m) and ~q;~ =q, . For a
homogeneous pattern with ~q;( =q„the amplitudes are
real and the equations read as

At =sAI, —aA(A„,—b(AI +A )At —Al, ,

where the other two equations are obtained by circular
permutation of k, l, m. Expressions for a and b, and the
relationship of the A; to the convective heat current j""',
are given in Ref. [16]. The parameter a depends on the
extent to which the fluid departs from the Oberbeck-
Boussinesq approximation, for which a=0. There are
three stationary solutions [2,7-9]: conduction (At =Ai
=A„,=0), hexagons (Al, =AI =A~ =Ah«), and rolls
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FIG. 2. Instabilities and thermodynamic thresholds vs c.
The solid line gives the experimental path. The thermodynamic
threshold eT is given by 9 e .

FIG. 3. (a) Hexagons appeared at s=O and spread. (b)
Stable pattern at e=O after transients had died out. (c) StabIe
pattern at e = —1.92 x 10 =eT. The circular pattern in the
upper left-hand corner was caused by a dust particle. The spot
at the lower right-hand corner was caused by lower reflectivity
of the bottom plate. Neither inhomogeneity seemed to in-
fluence the experimental observations.
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(&k =A«a, Al =A~ =0). The stability thresholds [17]s„s„,and ~b were discussed above and shown in Fig. 2.
For a & 0 (a (0), only hexagons with upAow (downfiow)
in the center are stable. For gases a &0, and downflow
hexagons are chosen.

Equations (1) have a generalized potential [2,7-9] @,
such that A; = —84&/8A;. An absolutely stable state cor-
responds to the global minimum of @, while metastable
states correspond to local minima. Any dynamics of the
pattern will decrease the potential. Its existence ensures
that two stable phases can coexist only when they have
the same value for @. We define the value of e at which
this occurs as aT for coexistence of conduction and hexa-
gons, and as sT for coexistence of hexagons and rolls. As
shown in Fig. 1, for e& eT &0, conduction, for cT & c
& cT, hexagons, and, for s& eT, rolls are the absolutely

stable states [9,18]. For values of s other than sT and sT,
the front between the two states will move so that the
state with the lower potential spreads [9]. Thus we can
explain the experimental observations sho~n in Fig. 3 by
the cell filling with hexagons until the spatially varying s
reaches sT. On decreasing e the hexagons disappear
when s ( sT throughout the cell [Fig. 3(c)].

Experimentally, we found sT= —(2.0~0.1)X10
and s, = —(2.3~0.1)X10 . The theoretical value for
e, is —1.65 x 10; the error due to uncertainties in the
height and material properties is only + 5x10 . Possi-
ble explanations for the discrepancies might be found in

the breakdown of the perturbation expansion [2] or the
spatial inhomogeneity of the cell. The wave number q in

units of d ' was 3.14~ 0.07, in good agreement with the
theoretical result [2] q, =3.117.

On increasing s, hexagons filled the cell [11] at

=—0.02, as shown in Fig. 4. The circular rolls close to the
sidewalls are due to static sidewall forcing [11]. Even on

jumping to finite c, initial dislocations and grain boun-
daries annihilated and a well-ordered pattern was reached
after —15I t,

In this experiment it was not possible to reach cb, the
threshold for the instability of hexagons to rolls. Never-
theless, we observed a transition from hexagons to rolls
and vice versa. When, starting with a defect-free hexago-
nal lattice, we increased e quasistatically to values close
to sT, we observed time dependence in a belt of width
—20d adjacent to the sidewalls. The rest of the pattern
was defect-free. The wave number decreased as s in-

creased, and close to the transition q =3.07~0.07. At
the transition, rolls appeared in the time-dependent belt
and invaded the rest of the cell. We observed a long tran-
sient -20I t,„where rolls and hexagons competed; rolls
had a tendency to bend and form local patches of spiral
patterns. Eventually, the pattern ordered into a rotating
n-armed spiral terminating in n dislocations, such as the
two-armed spiral shown in Fig. 5. We observed cases
where a spiral extended to the cell boundary, and others
where it was surrounded by concentric rolls. The sense of
rotation of the spirals was such that the resulting waves
propagated out from the spiral core. While the spiral was
rotating, the dislocations rotated on circles at the same
frequency and annihilated the spiral waves. We observed
stable spirals of left and right handedness and with values
of n from 0 to 13. The period of rotation was always
similar to that given for the two-armed spiral in Fig. 2,
but no detailed investigation was done. The wave num-
bers of the rolls were close to that of the hexagons before
the transition.

On decreasing e quasistatically, a transition back to
hexagons occurred. They appeared in small spots at the

FIG. 4. Shadowgraph picture of hexagons at a=0.06. The
circular disk is the convection cell. The spot at the lower right
of the picture as also seen in Fig. 3.

1.4% %4~~*:l"'ksdN

FIG. 5. Two armed spiral at v=0. 15. The spiral rotates
clockwise with a period of —2400t,
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boundaries and invaded the cell. There was no competi-
tion between hexagons and rolls. The rolls quickly disap-
peared, leaving a very disordered pattern of hexagons,
which healed into a defect-free hexagonal lattice after a
transient of about 15K t, The wave number was the
same as that of the hexagonal pattern before the transi-
tion to rolls.

In Fig. 1 the shaded areas and the arrows indicate the
experimentally observed transition regions. We found
that the actual transition points and the extent of the hys-
teresis depended on the size of and the time intervals be-
tween steps in e, with longer time intervals giving a small-
er hysteresis loop. The transition regions lie very near eT.
In analogy with first-order phase transitions, the appear-
ance of the "thermodynamically" preferred phase at the
boundaries is reminiscent of heterogeneous nucleation.

The time dependence of the hexagonal pattern near the
sidewalls which preceded the breakup of the lattice, the
transition to spiral states at slightly higher e, and the
periodically time-dependent spirals cannot be explained
by a model like Eq. (1), which has a potential even after
inclusion of linear gradient terms [7,9]. An explanation
of these nonrelaxational eAects will presumably require
the inclusion of nonpotential, nonlinear gradient terms
[8], and of large-scale fiow [19]. It remains to be seen
whether stochastic fields [7,20] will also have to be in-
cluded in order to describe the experimental observations
near the thermodynamic thresholds.

We can also comment on the results by Ciliberto, Pam-
paloni, and Perez-Garcia [4]. They found a transition re-
gion between hexagons and rolls of size 0.03 (~(0.09,
while the instability threshold predicted by theory occurs
at eb =0.18. For their conditions, we calculate cT =0.07,
which lies within their experimentally observed transition
region. Considering our observation of the time-depen-
dent belt, we think that the wide transition region and
time dependence found might be due to the smaller as-
pect ratio used there.
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