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Two-Photon Processes in Real Atoms
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We present a general method for calculating two-photon processes in real atoms by a variant of the
usual multichannel quantum-defect theory (MQDT). Most notably, this method enables us to describe
processes in which a single photon has enough energy to ionize the atom (above-threshold processes).
A11 eAects of intermediate Rydberg series, continua, or autoionizing series are treated on an equal foot-
ing and with the same ease; the fina state is also treated properly by standard MQDT. This method
should also work for many three- or four-photon processes.

PACS numbers: 32.80.Rm, 32.80.Fb, 32.80.Wr

The development of high-intensity lasers has enabled
the experimental exploration of nonlinear interactions of
atoms with electromagnetic fields. The current state of
theory cannot describe the full atom-laser field interac-
tion; in this paper we emphasize the atomic dynamics
while treating the electron-laser interaction at the level of
perturbation theory. In perturbation theory, these non-
linear (multiphoton) processes are described by ampli-
tudes which contain summations over all possible inter-
mediate states. These summations are dificult enough
without adding to it the internal dynamics of the atom
(e.g. , electron correlations), especially when one of the in-

termediate photons is above threshold. There have been
very few attempts at realistic calculations for complicated
atoms with intermediate energy near or above threshold
[1-5]. Fink and Zoller [6] have proposed a parametriza-
tion of two-photon processes utilizing the ideas of mul-
tichannel quantum-defect theory (MQDT). However,
the calculation of those parameters has not been pursued.
Consequently, the lion's share of the theoretical work in

this field simplifies the atomic physics by using model
atoms or atomic hydrogen. In contrast, theory for one-
photon processes has matured to the point where calcula-
tion of accurate cross sections is nearly routine.

In this paper, we describe how to weld techniques and
ideas developed for the description of one-photon process-
es to multiphoton processes. We show that the R-matrix
technique, now highly developed for one-photon process-
es, combined with the ideas in Ref. [6] describe two-
photon processes with the accuracy previously achieved in

one-photon calculations. The R-matrix procedure takes
advantage of the finite range of both the complicated
electron-electron interactions and the electron-laser in-
teraction. The parametrization of the multiphoton ma-
trix elements by MQDT allows the compact description
of these processes over /arge frequency ranges. The
method we use is only restricted by the requirement that
2m should be less than the energy needed for double ion-
ization. This is the same restriction presently limiting the
theory of one-photon processes. In particular, we can
study the eAect of intermediate-state Rydberg series, au-
toionizing resonances, and continua.

We will sketch the theory for two-photon processes; its
application to higher-order processes can be treated by
iterative techniques. Also, we stress that the techniques
developed here are applicable to the description of other
physical processes involving perturbative calculations.
This paper deals with Al as the target atom only because
one of us has some familiarity with this element through
previous study. In future publications we will spell out
our method in more detail; we also plan to initiate a study
of multiphoton processes akin to the fuller study of
single-photon processes already carried out [7] (e.g. , our
first step will be to examine these processes in the alkaline
earths, Be, Mg, Ca, for the similarities and diAerences
among these elements).

The two-photon amplitude for going from state I. to
state f has the structure

Tj(2'; =g, de(flDle)(s;+to a+i ri) '(—slDli&,

where D is the dipole operator (we will always use the
length gauge) and co is the light frequency. Energy con-
servation requires e;+2~=~g for two-photon absorption.
The Raman efTect consists of absorbing a photon of fre-
quency m and emitting a photon of frequency 0, with
c;+e =sf+ Q. Dynamic polarizability consists of absorb-
ing and reemitting (or emitting and reabsorbing) a pho-
ton of frequency to with lf) =li) in this case. We will

only consider the cases where li) is a localized bound
state.

We solve Eq. (1) by the procedure of Dalgarno and
Lewis [Sl, setting TI;=(flDlA) with lA) a solution of
the inhomogeneous equation

(e;+ co —H ) l A) =D li ),
where the limit tl 0+ in Eq. (1) translates into impos-
ing outgoing wave boundary conditions on lA) in the open
channels. We solve for lA& by noting that lA&=lAo)
+&tl tttt&At where IAo& is any solution of Eq. (2) and the
l y;) are solutions of the homogeneous equation

(a;+to —H)ly;) =0.
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MQDT [9] now comes into play by judiciously choosing
the A; to give the correct boundary conditions for ~A) as
r ~. MQDT takes advantage of the fact that once an
electron leaves the core region it only feels an average po-
tential due to the core electrons, thus simplifying its dy-
namics. The wave function of the electron in this average
potential can be solved analytically. We can now simply
impose the physical boundary conditions on ~A) because
the asymptotic form of ~Ao) and ~y;) are known analyti-
cally once their logarithmic derivatives are specified at a
finite radius, typically 15-20 a.u. The boundary condi-
tions at r ~ are completely ignored when calculating
~Ao) and ~ter;&, thus making these functions insensitive to
the energy. The form of these functions outside of the
core region is given by

and

where tti; is the i' channel function and f (g) is the solu-
tion of the Schrodinger equation for the long-range field
[9] which the outgoing electron feels. For neutral atoms,
f (g) is a Coulomb function. The coefficients 2; are
determined by enforcing the boundary conditions at large
distances (i.e., ~A) must converge to zero in the closed
channels and must have only outgoing waves in the open
channels). This procedure is similar to the treatment in

Sec. 8.4 of Ref. [9]. The coefficients A; are thus very sen-
sitive to the energy. However, the A; depend on the in-
verse of a small matrix times a vector, and so we can
aftord to calculate it much more often. Specifically,

where 8 is a diagonal matrix with components tanzvj if
the j channel is closed and i =4—

1 if the j channel is

open and K and k are from Eqs. (4) and (5).
In all that follows, the method of solving Eqs. (2) and

(3) is largely a matter of taste. We use the eigenchannel
R-matrix method in its streamlined formulation [10] to
solve Eq. (3). The R-matrix procedure is a variational
principle for determining the 1ogarithmic derivatives of
the wave function on a boundary. In practice, the wave
function is expanded in a superposition of basis functions;
thus the variational principle reduces to a generalized ei-
genvalue problem where the eigenvectors are coeScients
of the basis expansion and the eigenvalues are the loga-
rithmic derivatives. A variant of this method also works
for Eq. (2). Ao is constructed by a superposition of basis
functions inside an R-matrix box. The coeScients of the
superposition are determined by

(7)

with Z, =(y~. ~D~i); I is proportional to the energy minus
the Hamiltonian plus Bioch operator [Eq. (2a) of Ref.
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FIG. l. The real (dotted line) and imaginary (solid line)
parts of the dynamic polarizability for the D' intermediate-
state symmetry. The imaginary part is positive for all frequen-
cies.
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[10]], cr is the surface operator [Eq. (2b) of Ref. [10]],
and b~ is minus the logarithmic derivative of Ao at the
surface of the R-matrix box. b~ can be chosen to be any
value which leaves Ci finite. Equation (7) can be
"streamlined. " This has the advantage that the logarith-
mic derivative of ~Ao& is (in some sense) found variation-
ally and also that computer programs that were
developed for one-photon processes can be easily convert-
ed to calculate two-photon processes.

We chose Al to be the atomic target to test this pro-
cedure. It is, for our purposes, a three-electron atom hav-

ing the ground-state symmetry 3s 3p I'" outside of a
Ne-like core. The energy needed to ionize Al leaving
behind two electrons in the states 3s, 3s 3J] P, and
3s3p 'P is 0.22, 0.39, and 0.49 a.u. , respectively. Upon
absorbing a photon, the atom has either S", 2P', or 2D

symmetry. The five channels used for the D' symmetry
are 3s +d-wave electron, 3s3p P+p-wave or f-wave
electron, and 3s 3p 'P+ p-wave or f-wave electron. After
absorbing two photons the atom can have either S, P",
D", or F" symmetry.

We have calculated the frequency-dependent polariza-
bility, g

' (rii), of Al which provides a sensitive test for
the inhomogeneous solution because crT ee ro Im(g ' ).
The total photoabsorption cross section a.T can be easily
calculated using completely diAerent techniques. We cal-
culated the aT in the length gauge for the D' final-state
symmetry over the energy range between the 3s and
3s3p 'P thresholds using the eigenchannel R-matrix ap-
proach, obtaining good agreement with previous work [7].
Using the same basis functions we then calculated the dy-
namic polarizability using the solution to Eq. (2) with

outgoing wave boundary conditions. The diAerence in o.T
was less than one part in a billion. This agreement
reAects the stability of this method of calculating ~A) and
shows that it is as accurate as the homogeneous solution
in this energy range.

In I ig. 1, we graph the real and imaginary parts of
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g
' (ro) which arise from the two sequences 3s 3p P'

+'hco D' 3sz3p P"~ hro. We plot g
' only for

this pathway for reasons of clarity. The lowest threshold
(3s ) of Al lies at ro —0.22 a.u. ; the second threshold
(3s3p P) is at ro —0.39 a.u. Not surprisingly, every
structure in the real part of g

' corresponds to a struc-
ture in the imaginary part. On the whole the real part is
negative above the lowest (3s ) threshold. For frequen-
cies less than —0.22 a.u. , g

' is purely real with a Ryd-
berg series of divergences proportional to (e;+ ro —s„)
The total g

' (0) summed over all intermediate-state
symmetries ( S', P', D') is equal to 57.6 a.u. , which
compares favorably with the value 56.3 a.u. obtained by
Reinsch and Meyer [111. Note that the real part changes
sign between co =0 and 0.22 a.u. This is probably due to
the very broad 3s3p D' perturber centered threshold.
Another striking feature of Fig. 1 is that the autoionizing
series, 3s3p( P)np D', converging to the threshold at
co —0.39 a.u. , produces nearly Lorentzian peaks in the
real part, while the autoionizing series, 3s3p('P)np D',
converging to the threshold at m —0.49 a.u. produces
dips. This is correlated with the Fano q parameter
characterizing the imaginary part. qR, the q value of
Re(g ), appears related to qI, the q value of Im(g ' ),
roughly by q~ —(1+ql )/(1 —qI). Another notable
feature of Fig. 1 is the difference in magnitude of the two
curves. We will need to gain experience with g

' by cal-
culating it for several elements in different columns of the
periodic table before knowing how ubiquitous is this
feature.

Figure 2 shows the two-photon absorption cross section
through the path 3s 3p P'+2hco 2D'+ hro 2F'.
This pathway is relevant to absorption of circularly polar-
ized photons by optically pumped atoms, though we did
not choose this process because of its physical relevance
but because it facilitates disentangling the eA'ects of
intermediate- and final-state resonances. The small peak
at —0.165 (3s3p P3d F') is the lowest member of the
final-state Rydberg series with threshold at 2m —0.39 a.u.
The large resonance in the two-photon cross section at—0.15 a.u. stems from the lowest D' intermediate state;
the large resonance at —0.175 a.u. is the next state of
this symmetry (i.e., 3s 3d and 4d, respectively). These
are the first two resonances of the intermediate Rydberg
series approaching 0.22 a.u. The cross section for higher
energies pertains to above-threshold ionization (ATI).
ATI is greatly enhanced near the frequencies 0.231
(3s3p 'P4d F') and 0.237 a.u. (3s3p 'P5d F ) which
are autoionizing resonances in the final state. ATI should
also be enhanced near autoionizing resonances of the in-
termediate state; probably the largest enhancement of
ATI will be near autoionizing resonances in both the in-
termediate and final states.

We can take advantage of the generalization of MQDT
[12] to extend the range of applicability of this pro-
cedure. For example, we should be able to calculate mul-
tiphoton amplitudes of negative ions by utilizing the ana-
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FIG. 2. The two-photon ionization cross section only for the
'F" final-state symmetry. (a) O. l I a.u. & Aco &O. I9 a.u. (b)
0.18 a.u. & @co &0.24 a.u.

lytic solution of Schrodinger s equation for a polarization
potential. Another interesting possibility would be to
study second-harmonic generation by neutral atoms in a
constant electric field. It should be interesting to follow
the evolution of this process from perturbative in the elec-
tric field at low photon energies to highly nonperturbative
in the electric field as twice the photon energy approaches
threshold. This process near doubly excited states should
also display interesting eA'ects which may well have quali-
tatively diA'erent behavior depending on whether or not
the doubly excited state can decay to the ground state.
These seem to be the two most interesting situations to be
explored, but any of the generalizations of QDT explored
by previous workers for one-photon processes should also
be incorporated in the present method of calculating mul-
tiphoton processes.

The procedure we have described can be easily applied
to any two-photon processes (Raman scattering, two-
photon absorption, and dynamic polarizability). Particu-
larly, this method is not restricted to the cases where the
inhomogeneous function, (A), is described by an L basis.
The variant of MQDT for ~A) applied here requires the
same computational eAort far below the threshold as near
the thresholds. This feature allows for a more unified and
automated treatment of two-photon processes in mul-
tielectron atoms whose atomic physics is fully developed.
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Higher-photon processes should be equally amenable to
this formulation after overcoming the single difficulty
that arises when the inhomogeneous term in Eq. (2) ex-
tends outside of the R-matrix box. In this situation, the
inhomogeneous solution outside of the box is not simply
Coulomb functions. We will try to adapt the techniques
of Ref. [13] to resolve this difficulty. This method even-
tually runs out of steam for high-order processes due to
the propagation of the errors in the inhomogeneous equa-
tion. We are confident that this method is su%ciently ac-
curate up to four-photon processes.
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