τ Polarization as a Signal of Charged Higgs Bosons

B. K. Bullock,⁽¹⁾ K. Hagiwara,^{(1),(2)} and A. D. Martin⁽¹⁾

⁽¹⁾Department of Physics, University of Durham, Durham, DH1 3LE, United Kingdom

⁽²⁾Theory Group, KEK, Tsukuba, Ibaraki 305, Japan

(Received 22 July 1991)

A measurement of the τ polarization at hadron colliders offers an excellent signal for the detection of charged Higgs bosons, via the decay $H^{\pm} \rightarrow \tau^{\pm} v$. We show how such a determination can distinguish these events from the $W^{\pm} \rightarrow \tau^{\pm} v$ background, for each of the $\tau \rightarrow \pi v$, ρv , $a_1 v$, and $l v \bar{v}$ decay channels.

PACS numbers: 14.80.Gt, 13.85.Qk, 13.88.+e

The existence of charged Higgs bosons, H^{\pm} , is a necessary ingredient of most extensions of the minimal Higgs sector of the standard model. The supersymmetric extension is a notable example. Surprisingly, few viable signals exist for the detection [1,2] of the charged Higgs boson; however, we shall show that the unexpected massiveness of the top quark offers an excellent chance of discovering H^{\pm} at hadron colliders. Provided the mas, m_H , of the charged Higgs boson is in the range $m_H < m_t$, it can be produced via $t \rightarrow H^+b$ (or $\bar{t} \rightarrow H^-\bar{b}$) and can be detected via the subsequent decays $H^{\pm} \rightarrow \tau^{\pm} v_{\tau}$. The event rate [1,3] depends on the branching fractions of these decays, which in turn depend on the magnitudes of the Yukawa couplings. The main background to the τ signal for the H^{\pm} is $W^{\pm} \rightarrow \tau^{\pm} v$, where, in addition to $t \rightarrow W^+b$ (and $\bar{t} \rightarrow W^-\bar{b}$), the W boson can also be produced by the Drell-Yan mechanism.

At first sight it appears that it will be difficult to identify the presence of $H \rightarrow \tau v$ decays from among the $W \rightarrow \tau v$ events: the signal relying simply on an excess of τv events over the known rate for $W \rightarrow \tau v$ events would require high statistics and a good control of systematic errors to be convincing. However, here, we emphasize that the decay products of the τ have strikingly different topologies according to whether they originate from a parent W^{\pm} or H^{\pm} . To be specific let us discuss the τ^{-} channel. The crucial observation is that τ – leptons arising from $H^- \rightarrow \tau^- \bar{\nu}$ decays are almost purely right handed, in contrast to the left-handed τ -'s which arise from W^- decays. This is a consequence of the helicity flip nature of the Yukawa couplings of the Higgs fields, and, indeed, the $H^- \rightarrow \tau_R^- \bar{\nu}_R$ character of the decay is true in all models containing only left-handed neutrinos (and right-handed antineutrinos). Now it has been known for a long time [4] that the decay distributions of τ leptons depend on the polarization of the parent τ ; in particular, the distributions of a τ_R^- can be significantly different from those of a left-handed tau, τ_L^- . That is, for each decay channel $(\tau \rightarrow \pi^- v, \rho^- v, ...)$ the momentum distribution of the decay products (π^-, ρ^-) $\rightarrow \pi^{-}\pi^{0}, \ldots$) differs according to whether the parent is a τ_R or a τ_L . We shall see that these differences are sufficiently striking to establish, from a relatively low number of events, whether or not a τ_R^- occurs, and hence the existence of the charged Higgs boson, H^{-} .

In Fig. 1 we show in the collinear limit $(E_{\tau}/m_{\tau} \gg 1)$ the energy distributions of the charged particles arising from the various (primary) decay modes of the τ^{-1} . That is,

$$\frac{1}{\Gamma_{\tau}}\frac{d\Gamma}{dz}(\tau^{-} \to A^{-}v's) = B(\tau^{-} \to A^{-}v's)H_{A}(z), \quad (1)$$

where $z = E_A/E_\tau$ with $A = e, \pi, \rho, a_1$ arising respectively from the $\tau \longrightarrow e^- v_e v_\tau, \pi^- v_\tau, \rho^- v_\tau, a_1^- v_\tau$ decay modes. $B(\tau \longrightarrow A^- v)$ are the branching fractions for these decays modes (which we take to be 0.177, 0.11, 0.227, and 0.146 for $A = e, \pi, \rho$, and a_1 , respectively), while the

FIG. 1. The fractional energy distributions of particle $A^$ arising from (a) left-handed and (b) right-handed τ^- decays, i.e., $\tau^- \rightarrow A^- +$ missing energy where $z = E_A/E_\tau$, and where it is assumed that $E_\tau \gg m_\tau$. The *T*,*L* subscripts refer to transversely, longitudinally polarized vector mesons. The effects of the finite widths of the ρ and a_1 are included. Distributions (a) and (b) characterize W^- and H^- decays, respectively.

explicit expressions for H_e , H_{π} , and H_{ρ,a_1} can be found in Ref. [5]. Below we shall study how the subsequent $\rho \rightarrow 2\pi$ and $a_1 \rightarrow 3\pi$ decays can be used to give further information on the polarization of the τ [5-7], and, in preparation for this discussion, we show separately the distributions of both transversely and longitudinally polarized vector mesons produced in τ decay (which we have denoted as ρ_T, ρ_L and a_{1T}, a_{1L} in Fig. 1). In contrast to Ref. [5], the distributions shown in Fig. 1 take account of the effects of the finite width of the ρ and a_1 mesons. That is, the distributions H_{ρ,a_1} of (1) are computed by integrating over a realistic $n\pi$ invariant-mass distribution in the $\tau \rightarrow n\pi + v$ decay modes

$$H_{v}(z) = \int_{(nm_{\pi})^{2}}^{zm_{\tau}^{2}} F_{v}(m^{2}) H_{v}^{0}(z,m^{2}) dm^{2}, \qquad (2)$$

where n = 2,3 for $v = \rho, a_1$, respectively. The distributions $H_v^0(z,m^2)$ are given by Eqs. (18) and (19) of Ref. [5] with $m_v^2 = m^2$. The function F_v embodies both the phase-space factor and the $\tau \to n\pi + v$ decay matrix element which involves the usual Breit-Wigner form, $[m^2 - m_v^2 + im\Gamma_v(m)]^{-1}$. Here we adopt a simple parametrization [8] of the $W^* \to n\pi$ matrix elements and take the resonance parameters to be $(m_\rho, \Gamma_\rho) = (0.77, 0.15)$ GeV and $(m_{a_1}, \Gamma_{a_1}) = (1.22, 0.42)$ GeV [9]. The plots shown in this paper are, however, insensitive to the detailed form assumed for the matrix elements. The smearing effects arising from the finite widths of the ρ and a_1 are only found to be significant for $z \leq m_v^2/m_\tau^2$; note that the zero-width approximation would give no events for $z < m_v^2/m_\tau^2$.

We see that the energy distributions arising from the $W^- \rightarrow \tau_L^- \rightarrow A^-$ events [Fig. 1(a)] are significantly different from those of $H^- \rightarrow \tau_R^- \rightarrow A^-$ decays [Fig. 1(b)]. In particular, the most energetic particles from τ_L^- decays are *transversely* polarized ρ^- and a_1^- mesons, whereas the energetic particles arising from τ_R^- decay are π^- , and *longitudinally* polarized ρ^- and a_1^- mesons. Therefore the H^- signal can be considerably enhanced if we can use the subsequent $\rho \rightarrow 2\pi$ and $a_1 \rightarrow 3\pi$ decay distributions to distinguish between transversely and longitudinally polarized ρ , and a_1 , mesons.

Now the final-state pions arising from a massive W or H boson, via τ decay, will be observed to be approximately collinear. Based on the classical work of Berman and Jacob [10], Rougé [7] has proposed decay angular distributions which, in principle, can act as the polarization analyzer of the τ . However, in the essentially collinear experimental configuration, it will be difficult to measure the proposed angles (for example, the angle ψ between the laboratory line of flight of the a_1 meson and the normal to the plane defined by three pions in the a_1 rest frame). Rather, here, we seek experimental distributions which rely only on the measurement of the pion energies, rather than their angular configuration, but which differ between events of $W \rightarrow \tau_L^-$ and $H \rightarrow \tau_R^-$ origin.

For the decay $\rho^- \rightarrow \pi^- \pi^0$ the π^- energy distribution,

in the collinear limit, is of the form [5]

$$\frac{d\Gamma}{dx}(\rho_T \to \pi^- \pi^0) \sim 2x(1-x) - \frac{2m_\pi^2}{m_\rho^2},$$
 (3)

$$\frac{d\Gamma}{dx}(\rho_L \to \pi^- \pi^0) \sim (2x-1)^2, \qquad (4)$$

according to whether the ρ is transversely or longitudinally polarized, where $x = E_{\pi^-}/E_{\rho}$. That is, transversely polarized ρ 's favor equal splitting of the ρ energy between the two decay pions, whereas longitudinally polarized ρ 's lead to large differences of the π^- and π^0 energies. Combined with the preference of energetic ρ_L (ρ_T) mesons from $H^- \rightarrow \tau_R^- \rightarrow \rho^-$ ($W^- \rightarrow \tau_L^- \rightarrow \rho^-$) decays, we therefore expect that the energetic ρ mesons from $H^$ decays will tend to give pions which are much more asymmetric in energy than those from W^- decays.

Similarly for the measurement of the a_1 polarization we assume only that the energy fractions,

$$x_i = E_i / (E_1 + E_2 + E_3), \qquad (5)$$

of the three outgoing pions are known. For both the $a_1^- \rightarrow \pi^- \pi^- \pi^+$ and $a_1^- \rightarrow \pi^0 \pi^0 \pi^-$ decay modes there are two identical pions in the final state, which we take as $\pi_1 = \pi_2$ and so the distinct pion is labeled π_3 . In Fig. 2 we show the scatter plot $d\Gamma/dx \, dy$ arising from the decays of both longitudinally and transversely polarized a_1 mesons, where

$$x = x_3$$
 and $y = \min(x_1, x_2)$. (6)

FIG. 2. The scatter plots for (a) longitudinally and (b) transversely polarized $a_1 \rightarrow 3\pi$ decays, where x_i are the energy functions carried by three pions (with pions 1,2 having identical charges). It is assumed that $m_{3\pi} = m_{a_1} = 1.22$ GeV.

FIG. 3. The probability that the ρ and a_1 are longitudinally polarized, depending on whether they originate from τ_L^- or τ_R^- decays, as a function of $z = E_{n\pi}/E_{\tau}$.

Again the difference between a_{1L} and a_{1T} decays is striking. For a_{1T} decays, Fig. 2(b), all three pions have a tendency to share equally the energy. On the contrary for a_{1L} decays, Fig. 2(a), the favored configurations are those in which one or two of the three pions are soft; the upper densely populated corner of the plot corresponds to π_3 being soft and π_1, π_2 sharing all the energy, whereas the right-hand populated corner corresponds to both π_1, π_2 being soft and π_3 energetic.

It is remarkable, and fortunate, that the energetic $n\pi$ systems from $W^- \to \tau_L^- \bar{\nu}_R$ and $H^- \to \tau_R^- \bar{\nu}_R$ decays are predicted to be so very different. For the $W \rightarrow \tau$ decays the leading particle is either ρ_T or a_{1T} [see Fig. 1(a)], both of which prefer their energy to be equally shared between the outgoing pions; whereas the leading particle resulting from $H \rightarrow \tau$ decays is either π , ρ_L , or a_{1L} , where the subsequent ρ_L decay gives rise to one energetic pion and the a_{1L} decay to either a single energetic pion or two energetic identical pions. This difference should allow a clear separation of a possible $H \rightarrow \tau v$ signal from the $W \rightarrow \tau v$ background. We notice in passing that these characteristic differences in the multiparticle distributions of polarized τ decays will affect the efficiency of detectors to isolate the τ decay signal from the low multiplicity hadronic background in hadronic collisions.

We cannot, of course, distinguish ρ_T from ρ_L (or a_{1T} from a_{1L}) on an event-by-event basis. Rather, in a quantitative study we can measure the probability P_L of a 2π (or 3π) event arising from the decay of a longitudinally polarized meson as a function of the kinematic variables of the decay. For example, the "polarimeter," P_L , of a $\pi^-\pi^0$ system of momentum fraction z ($=E_{2\pi}/E_{\tau}$) may be readily determined by comparing the observed x ($=E_{\pi}/E_{2\pi}$) distribution with the form

$$[1 - P_L(z)]d\Gamma(\rho_T)/dx + P_L(z)d\Gamma(\rho_L)/dx.$$
(7)

Similarly the polarization of a 3π system may be extracted by comparing the observed scatter plot distribution

with

$[1 - P_L(z)]d\Gamma(a_{1T})/dx\,dy + P_L(z)d\Gamma(a_{1L})/dx\,dy\,.$ (8)

In fact, it is a good approximation to simply take $d\Gamma/dx$ in (7) to be (4) evaluated at $m_{2\pi} = m_{\rho}$, and $d\Gamma/dx \, dy$ in (8) to be those of Fig. 2 (which were obtained using $m_{3\pi} = m_{a_1} = 1.22$ GeV), for all values of z, except those at low z ($z \le m_v^2/m_\tau^2$) where the $n\pi$ system is forced off the vector-meson mass shell.

In Fig. 3 we show the theoretical expectations for the polarimeter P_L as a function of $z = E_v/E_\tau$ for both τ_L^- and τ_R^- . Here the effects of the finite ρ and a_1 widths have been included. As expected, we see that the energetic $n\pi$ systems which arise from $W^- \rightarrow \tau_L^-$ decays will have a low P_L (i.e., will be predominantly transversely polarized), whereas $H^- \rightarrow \tau_R^-$ will lead to predominantly longitudinally polarized energetic $n\pi$ systems. Of course, in a realistic confrontation with data it will also be necessary to fold in the parent τ energy distribution, which is dependent on the production mechanism and on m_l, m_H , etc.

In summary, we have shown that a charged Higgs boson has a very distinctive $H^{\pm} \rightarrow \tau^{\pm} v$ decay signature, which is significantly different from the $W^{\pm} \rightarrow \tau^{\pm} v$ decays. It is characterized by $\tau \rightarrow \pi$, ρ , a_1 decays with a *single, energetic*, pion (or two energetic identical pions in a fraction of the a_1 decays) with the overall event having large missing transverse momentum. These features will also be useful to identify the H^{\pm} signal in $e^+e^ \rightarrow H^+H^-$, particularly if $m_H \simeq m_W$.

We thank S. Miyashita and C.-K. Ng for discussions. B.K.B. and K.H. thank the United Kingdom Science and Engineering Research Council for the award of a Studentship and a Visiting Fellowship, respectively.

- [1] J. F. Gunion, H. E. Haber, G. Kane, and S. Dawson, *Higgs Hunter's Guide* (Addison-Wesley, Reading, MA, 1990).
- [2] Proceedings of the ECFA Large Hadron Collider Workshop, edited by G. Jarlskog and C. Rein [CERN Yellow Report No. 90-10 (1990)], Vols. I, II, and III.
- [3] A. C. Bawa, C. S. Kim, and A. D. Martin, Z. Phys. C 47, 75 (1990).
- [4] Y.-S. Tsai, Phys. Rev. D 4, 2821 (1971).
- [5] K. Hagiwara, A. D. Martin, and D. Zeppenfeld, Phys. Lett. B 235, 198 (1990).
- [6] J. E. Brau and G. J. Tarnopolsky, Phys. Rev. D 24, 2521 (1981); P. Aurenche and R. Kinnunen, Z. Phys. C 28, 261 (1985); E. W. N. Glover and A. D. Martin, Z. Phys. C 29, 399 (1985).
- [7] A. Rougé, Z. Phys. C 48, 75 (1990).
- [8] J. H. Kühn and A. Santamaria, Z. Phys. C 48, 445 (1990).
- [9] N. Isgur, C. Morningstar, and C. Reader, Phys. Rev. D 39, 1357 (1989).
- [10] S. M. Berman and M. Jacob, Phys. Rev. 139, B1023 (1965).