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Orientation of C6o Clusters in Solids
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The (hopping) interaction energy between C60 clusters as a function of their relative orientation is
studied with a tight-binding model derived from an ab initio calculation. DiA'erent structures are corn-
pared, and factors determining the cluster orientation and the lattice are discussed both without and
with doping. Comparison with experiment suggests that chemical bonding (hopping) is important for
the cluster orientation and the cohesive energy.

PACS numbers: 71.45.Nt, 61.50.Lt

C6o has attracted much interest after the discovery that
these clusters form solids [1], and that K- and Rb-doped
e6p solids are superconductors with relatively high transi-
tion temperatures [2]. Undoped C6o forms an fcc lattice,
probably with orientational disorder, above 249 K and a
simple cubic (sc) lattice with four clusters per unit cell
below 249 K [3]. In the latter case the four clusters are
believed to be located on an fcc lattice, but to have
different orientations [3]. The mechanisms determining
the orientations are not known. It is also not known
whether the intercluster binding is due to chemical bond-
ing or to the van der Waals interaction, and what factors
determine the lattice structure. These issues are ad-
dressed in this paper. Since the C60 clusters are almost
spherical, we assume that the van der Waals interaction
has a weak directional dependence and that the orienta-
tions and the lattice structures are mainly determined by
chemical bonding. We provide support for this view.

The atoms in the C60 cluster span twelve pentagons and
twenty hexagons, and are connected via two kinds of
edges: One is shared by two hexagons (hexagon edges)
and the other is shared by a hexagon and a pentagon
(pentagon edges). For two C6o clusters, we may compare
geometries where, e.g. , two faces (pentagon or hexagon),
two edges (pentagon or hexagon), or two corners are
pointing towards each other. We first consider factors
influencing the energies for these orientations. As the C60
clusters are on a lattice, there are additional geometrical
constraints on the possible orientations. Below we use a
tight-binding model for studying the orientational depen-
dence of the hopping energy for undoped and doped C60.
Repulsive forces are not explicitly included.

Before we present the full calculations, we discuss some
general aspects. Since the separation (—3 A) between
two atoms on diff'erent clusters is large compared with a
C-C bond (—1.4 A), the interaction between the clusters
can be treated in perturbation theory. Thus we first cal-
culate the states of an isolated cluster. Far below and far
above the Fermi level there are bonding (rr) and anti-
bonding (cr*) states, respectively, formed from sp -like
hybrids lying in the sphere surface. The 2p, -like states
pointing out of the surface are located closer to the Fermi
energy due to their weaker tr type of interaction [4]. The
latter states give the main contribution to the intercluster
interaction, due to both their direction and their relative

V;I = V~ (C ) C 3 +C 2C 4 ) + VP (C
)
C 4 +C 2C 3 ) (2)

where V, and Vp are the hopping matrix elements be-
tween the two orbitals on the two edges "directly" and
"diagonally, " respectively, across from each other. In the
case of two faces with /V atoms directed towards each
other, there may be N important terms in the matrix
element V~, and N terms in ~V~J~ . This will tend to
favor a large value of N. However, the phase factors of
these terms are expected to lead to large cancellations.
For instance, if, for an edge, an occupied bonding state
(c'~ =c2) is coupled to an unoccupied antibonding state
(cj3= —c~4), the matrix element is exactly zero. More
generally, the unoccupied states must have additional
nodes to be orthogonal to the occupied ones. If the inter-
cluster interaction between the occupied and unoccupied
states goes via many atoms, there is a greater chance to
have a large cancellation due to the extra nodes. It is
therefore not immediately clear if it is favorable to couple
the clusters via many or few atoms.

To discuss this in more detail we consider coupling via
two equivalent edges. We first perform the sums in Eq.
(1) over the gt, (gt) degenerate states with energy E;
=Et, (Ej =Et), where k and I denote . irreducible repre-
sentations of the icosahedral group. Since all atoms are

closeness to the Fermi energy. We therefore only consid-
er the 2p- orbitals. The interaction between two clusters
is then calculated in perturbation theory, and expressed in
terms of the hopping matrix elements V~ between the 30
(33) occupied states, energy E;, on one cluster and the 30
(27) unoccupied states, energy Ey, on the other cluster in
the undoped (heavily doped) case:

occ ilnocc )V (2+)V )2

E; —E~-

where the two terms in the numerator describe hopping
from the left to the right cluster and vice versa. A factor
of 2 comes from spin. If the clusters interact via corner
atoms only, say atom 1 on the left cluster and atom 2 on
the right cluster, we have V~ =Vpp c', c2, where Vp~ is
the hopping matrix element between two 2p orbitals
pointing towards each other, and c„' is the coeScient of
the ith wave function on the pth atom. For the interac-
tion between two edges (1-2 and 3-4), the hopping matrix
element is
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If pk pl 0 and V. = Vp = V, Eq. (4) gives a contribu-
tion 16g&gl V /60, i.e., approximately as N with N =2,
as expected. However, the phase factors will obviously
strongly reduce this contribution.

To illustrate this we have performed tight-binding cal-
culations for C60 clusters, with the nearest-neighbor dis-
tances 1.46 and 1.40 A in the single and double bonds, re-
spectively. The tight-binding hopping parameters V~~
and Vp~ are fitted to the five highest occupied and the
three lowest unoccupied bands in a linear-muffin-tin-
orbital band-structure calculation in the atomic-sphere
approximation. Following Harrison [S] we use V~~ /V~~= —1/4. Using the experience of tight-binding calcula-
tions, we include only nearest-neighbor intracluster in-
teractions. For the intercluster interaction such a pre-
scription is ill-defined, since very similar distances may
occur as the clusters are rotated. We therefore use an ex-
ponentially decaying intercluster interaction. From the
fit we obtain V~p =v Rexp[ —k(R —1.43)], where v

=6.7 eV/A and k=1.98 A '. The intracluster hopping
parameters are then —2.59 and —2.78 eV and the inter-
cluster hopping is —0.84 eV for the fcc structure (lattice
parameter 14.04 A) deduced below. The bandwidth ob-
tained from these parameters is consistent with electron
energy-loss spectroscopy [6] and photoemission [7] data.

Table I shows results for the states of an isolated clus-
ter. To understand the results for the phase factors p [see
Eq. (3)], we follow Ref. [6] and first consider the (com-
plex) states for an isolated pentagon

1
5

g exp( & imp+)g„,2

Js ~=~
(s)

where m =0, + 1, + 2, and g„are the orbitals at the five

pentagon corners. When the pentagons are coupled to
each other via hexagon edges, degeneracies are lifted but
the states belonging to different ~m~ do not mix very
strongly. Consider the phase p~' for two neighboring
atoms connected by a pentagon edge. If there were no
mixing, the lowest 12 states (4 energies in Table I) would
have p"' =0' (m =0), the next 24 states (6 energies)
would have &P ' =72' (m = + 1), and the highest 24
states (6 energies) would have p~' =144' (m = ~ 2).
For the second nearest neighbors the angles (p~ ) would
be twice as large. This is indeed fairly close to the calcu-
lation. With respect to the hexagon edges and without

equivalent, P; z t ~e„'
~

=gl, /60, independent of p. We
then introduce phases p,

cospk Z L'[ci/ 2 Icl I', (3)
i Ck iEk

where all coefficients have been chosen real. The interac-
tion is then

TABLE I. The one-electron energies El, , the irreducible rep-
resentations k, the degeneracies gk, the I values of the represen-
tations, and the phases pl, [see Eq. (3)] of an isolated
icosahedral C60 cluster. We use the notations p&p" and &I",.

" for
the pentagons and hexagons, respectively, where n = 1 stands
for nearest neighbor, n =2 for second nearest neighbor, and so
on. For the hexagon n =1 refers to a hexagon edge. All phases
are given modulo 180 . The highest occupied state lies at
—1.69 and at 0.52 in the undoped and doped cases, respective-
ly. All energies are relative to the 2p-orbital energies and mea-
sured in eV.

gk I yp2 ph] ~h2 ~h3

—7.97
—7.32
—6.11
—4.75
—4.23
—2.72
—2.66
—1.69

0.52
1.17
3.39
3.76
4.28
5.31
6.82
6.97

ag
& lu

hg

~2u

gu

gg
hg

h„
~lu

hg

~2u

h„
gg

gw

0
23
38
34
73
81
71
87
67
72

127
130
124
131
143
144

0
37
61
21

143
131
107
124
127
144
72
68
87
81
73
72

0
24
43
81
14
46
90
60

156
180
95
99

120
133
166
180

0
41
71

113
75

100
111
112
116
108
118
115
97
80
42
36

0
48
82

140
80

131
113
144
50
72
42
17
72
81

133
144

doping, the occupied states tend to have [4] primarily
bonding (p"' =0') and the unoccupied states antibond-
ing (p"' =180') character.

Combining Table I and Eq. (4), we can see that cou-
pling clusters via two pentagon edges is rather favorable.
The Fermi energy cuts through the 72' states, and there
are interactions i-j =0 -72, 72 -72, 0'-144, and
72 -144 . Among these pairs, the cosine terms lead to a
negative contribution only for the 0 -144 and 72 -144
pairs, and we expect the coupling via pentagon edges to
be larger than the coupling via corners. Coupling via
hexagon edges is much less favorable for the undoped
case, because of the tendency to have P —0' for the occu-
pied states and p —180' for the unoccupied states. With
doping, however, an antibonding state is occupied, and
this interacts efficiently with the unoccupied antibonding
states.

We next consider numerical results for the interaction
(hopping) energy between two clusters. We have con-
sidered the case when the centers of the clusters are kept
at a fixed distance. If two corner atoms point towards
each other, the separation between the closest atoms is
smaller than if edges or faces point towards each other.
In the latter case one may expect that the cluster centers
move closer, but due to the repulsive forces (not explicitly
considered in the calculation) acting between a larger
number of atoms, the separation of the closest atoms is
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TABLE II. The interaction energy between two clusters,
oriented so that corner atoms, equivalent edges, or equivalent
faces point towards each other. The cases when the cluster
centers are separated by 9.93 A and when the distance between
the closest atoms is 2.99 A, as well as the undoped and heavily
doped cases, are considered. All energies are in eV.

Fixed center
separation

Undoped Doped

Fixed closest
atom separation

Undoped Doped

Corner
Pentagon edge
Hexagon edge
Pentagon face
Hexagon face

—0.188
—0.199
—0.145
—0.153
—0.066

—0.168
—0.168
—0.174
—0.130
—0.059

—0.098
—0.173
—0.121
—0.482
—0.261

—0.087
—0.145
—0.143
—0.422
—0.246

expected to be larger than -for the case of two corner
atoms facing each other. We have therefore also per-
formed calculations where the shortest distance between
two atoms on the two clusters is kept fixed (which would
be appropriate for a hard-core interaction), expecting
reality to be between these extremes. In each case the
second cluster is obtained from the first via a rigid
translation.

Table II shows results both for the undoped case and
for the heavily doped case, with six additional electrons
per cluster. We assume that doping only changes the
number of electrons. This neglects, e.g. , the indirect hop-
ping between the clusters via the dopants, as well as the
question of whether there is room for six dopants in a
given structure. As expected, for the undoped case cou-
pling via pentagon edges is more eScient than via hexa-
gon edges, while for the heavily doped case the interac-
tion energies are comparable. For a fixed distance be-
tween the closest neighbors, coupling between pentagon
faces gives the largest interaction energy. The hexagon
face interaction is weaker, due to less favorable phases,
and despite the larger number N of atoms involved. For
fcc, bcc, and hcp lattices, with one atom per cell, the pen-
tagon faces cannot, however, point towards each other for
all nearest-neighbor pairs. In the fcc lattice pentagon
edges, and in the bcc lattice hexagon faces, can be rather
well oriented towards each other. Since there are eight
and twelve neighbors in the bcc and fcc lattices, respec-
tively, we may expect the bcc lattice to be favored if the
hexagon-face interaction is more than 1.5 times the
pentagon-edge interaction. Whether or not this is the
case depends on how close the atoms can get in the bcc
phase.

We have also performed calculations for different lat-
tice structures both with and without doping, varying the
orientation(s) of the cluster(s) in the cell to find the ener-

gy minimum. Table III shows the lowest hopping ener-
gies we have found in our T=O calculations. The ex-
change-correlation (e.g. , van der Waals) and repulsive
energies are not included in our tight-binding model and

TABLE I II. The interaction energy per C60 cluster for
different structures. The same cases as in Table II are con-
sidered. The number of atoms per cell are shown in paren-
theses. All energies are in eV.

Structure

Fixed center
separation

Undoped Doped

Fixed closest
atom separation

Undoped Doped

fcc (I)
bcc (1)
hcp (1)
bidir (2)

—1.029
—0.667
—0.939
—1.133

—0.903
—0.610
—0.891
—1.018

—1.029
—1.197
—0.923
—1.028

—0.882
—1.054
—0.756
—0.924

should be added to the energies in Table III. For the fcc
lattice and without doping, the energy is minimized when
the four threefold axes going through hexagon face
centers point along the (~ 1, ~ 1, ~ 1) cubic directions
(see, e.g. , Fig. 1 in Ref. [8]). In this orientation a hexa-
gon edge, parallel to the x-y plane, has the largest z coor-
dinate, and we call this the "top hexagon edge. " The
same orientation was obtained both when the distance be-
tween the centers of the clusters or the separation of the
closest atoms on two neighboring clusters were kept fixed.
In this orientation the clusters interact via pentagon
edges.

We next consider the low-temperature sc structure,
where the centers of the clusters seem [3] to be located on
an fcc lattice, but the orientations of the four clusters in
the unit cell are believed to diA'er. The pentagon edge
matching obtained in the fcc lattice can now be further
improved. If the "top hexagon edge" mentioned above, is
parallel to the x axis, the pentagon edge of the central
cluster lies 3.5' "above" the [011] line, while on the
(011) cluster it lies 3.5' "below" this line. In the sc lat-
tice, this mismatch can be reduced by rotating two of the
four clusters in the unit cell, e.g. , the two clusters in the
x-y plane, 90' around the z axis. The edge in the [011]
direction on the central cluster then also lies 3.5 below
the [011] line, while in the [101] direction both the edge
on the central and the edge on the neighboring cluster lie
3.5' above the [101] line. In this way the directions of
the edges are matched for eight of the twelve neighbors of
each cluster. This bidirectional structure forms a tetrag-
onal lattice with two clusters per unit cell. The near-
est-neighbor hopping matrix element is cos e V„p
+sin aV~p, where a is the angle of the p- orbital to the
line connecting the two atoms. For the sc case (for eight
of the twelve neighbors) a=3.5' and for the fcc (uni-
directional) case a =11.7'. Since V~~ and V~~ have op-
posite signs, the interaction is stronger in the bidirectional
case. When the more long-ranged interaction is included,
this diA'erence is reduced in the undoped case but in-
creased for the new interactions in the doped case.

The binding energy is of the right order of magnitude
to explain the experimental heat of sublimation (1.7 eV)
[9]. Since the hopping parameters are consistent with the
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experimentally observed level broadening of the isolated
cluster levels [6,7], we believe this shows that intercluster
hopping is important both for the cluster orientation and
the cohesive energy. Our structure does not, however,
reproduce all the intensities in an x-ray-scattering experi-
ment [3] very well, suggesting that the structure proposed
above is not the optimum one. The reason may be that
we have not found the absolute minimum in the twelve-
dimensional space of all possible rotations. It could also
be that relaxing the constraint that all cluster centers are
on an fcc lattice or introducing additional interactions,
would make one of the many other low-lying minima,
with possibly a quite diAerent x-ray-diff'raction pattern,
the absolute minimum. We believe, however, that the
presented arguments provide an important guide in the
search for the correct structure. For instance, the struc-
ture proposed by Heiney et al. [3] gives an unfavorable
interaction energy ( —0.88 eV per cluster with the closest
atom separation 2.99 A) in the same tight-binding model
as above, suggesting that this is not the correct structure
either.

Table III further shows that the fcc structure is always
favored over the hcp structure, in agreement with experi-
ment. Whether or not the fcc or bcc structure wins, de-
pends on the form of the repulsive forces (not included in

our calculation), since the interaction goes via more
atoms in the bcc lattice (six atoms) than in the fcc lattice
(two atoms). We therefore expect a larger separation be-
tween the closest atoms in the bcc structure, somewhere
between the two extremes in Table III. Table III does
not show any increased preference for the bcc structure
when the system is doped. The experimentally seen bcc
structure for C6o doped with six K or Cs atoms [10] is
therefore presumably entirely due to the lack of room for
six large dopants in the fcc structure.

We have discussed the interaction between C6p clus-
ters, using a tight-binding model with ab initio parame-
ters. These parameters lead to a level broadening due to
intercluster hopping which is consistent with experiment
[6,7]. Although the number of terms contributing to the
interaction energy increases with the number, N, of
atoms in contact, interference terms (orthogonality
effects) may, nevertheless, make a large value of N un-
favorable. We find that in the undoped case the interac-
tions via two pentagon faces (N =5) and two pentagon
edges (N =2) are relatively favorable. In the fcc struc-
ture (and at T=O) we find that the interaction takes
place via pentagon edges, since geometrical constraints
prevent interaction via pentagon faces. In the sc struc-
ture with four clusters per unit cell, the rotation of two
clusters relative to the fcc structure, allows for a more

efficient pentagon edge interaction, at least in the doped
case, but it is probably not the correct structure in the un-
doped case. The results obtained above should provide
guidance in the search for the correct structure. The cal-
culations give a binding enegy of the right order of mag-
nitude, suggesting that the intercluster hopping plays an
important role. In future calculations it would be in-
teresting to include van der Waals interactions and repul-
sive forces, as well as the interactions with the dopants.
One may also consider more complicated couplings be-
tween, e.g. , edges and faces.

After this work was completed, experimental work on
K3C6o at room temperature appeared [11], where the
structure was found to be the same as our bidirectional
structure above, except that there was a disorder in the
orietnations (along the x or y axis) of the top hexagon
edge. For the undoped case, the correct structure has
been found to involve the interaction of hexagon edges
with pentagon faces [12]. The dominating interaction is
described by Eq. (4) with Vti« V, and the columns p~
and p"' in Table I, and leads to slightly more favorable
phases than the pentagon edge coupling. Compared with
the fcc structure at the same closest atom separation, the
energy is slightly higher ( —1.013 eV), but it is somewhat
lower ( —1.139 eV) if the average of the nearest- and
second-nearest-neighbor distances (differing by only 3%
[13]) is taken equal to the closest atom separation in the
fcc case.
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