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Vibrations of Fractal Drums
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Fractal boundary conditions drastically alter wave excitations. The low-frequency vibrations of a
membrane bounded by a rigid fractal contour are observed and localized modes are found. The first
lower eigenmodes are computed using an analogy between the wave and the diffusion equations. The
fractal frontier induces a strong confinement of the wave analogous to superlocalization. The wave
forms exhibit singular derivatives near the boundary.

PACS numbers: 64.60.Ak, 03.40.Kf, 63.50.+x, 71.55.3v

Objects with irregular geometry are ubiquitous in na-
ture and their vibrational properties are of general in-
terest. For instance, the dependence of sea waves on the
topography of coastlines is a largely unanswered question.
The emergence of fractal geometry was a significant
breakthrough in the description of irregularity [11. It has
been suggested that the very existence of some of the
fractal structures found in nature is attributable to a
self-stabilization due to their ability to damp harmonic
excitations [2]. In this hypothesis, fractal coastlines are
best at damping waves and are submitted to weaker ero-
sion. Fractals having no translational invariance cannot
transmit ordinary waves. Mass fractal vibrations, called
fractons, are generally localized [3]. The problem which
we address is the vibration of a surface fractal (the frac-
tal bounded resonator) [4]. We present the first results of
an experimental and theoretical investigation of the prop-
erties of a 2D fractal drum.

The main properties of resonators are the structure of
the vibration modes, their spectrum, and their damping.
Up to now, only the asymptotic density of states of fractal
drums has been discussed from a mathematical point of
view [5]. The drum used in the experiment has the pat-
tern shown in Fig. 1(b). This contour has been machined
by laser etching in a stainless-steel sheet (ca. 0.5 mm).
The membrane is either a "soap bubble" or a stretched
plastic film. The setup is sketched in Fig. 1(c). The vi-

brations, from 15 Hz and above, are generated by a
loudspeaker placed 10 cm above the drum. Soap bubbles
are somewhat difficult to photograph and are unstable.
To photograph the wave form we used a membrane made
of streched plastic film (ca. 5 pm) on which a fine powder
has been sprinkled. We tested that the tension of the
membrane was uniform by examining it under cross po-
larizers. The powder was agitated by the vertical motion
of the membrane. This allowed for direct observation of
the vibrating regions of the membrane.

The lowest frequency mode shows no node line as pre-
dicted by general mathematical results [6]. The vibration
has a maximum at the center of the drum and decays
rapidly when entering the side regions. At higher fre-
quencies more complex resonances are observed. The
most striking fact is the observation of vibrations which
are confined in a finite region of the membrane like re-
gion A in Fig. 1(b). A photograph of a localized mode is

shown in Fig. 2.
The observation of confined modes was a surprise be-

cause, in principle, the symmetry of the structure forbids
their existence. In fact, this experimental localization is
due both to damping and to the existence of narrow paths
in the geometry of the membrane. If only one of the
equivalent regions like A is excited, then a certain time T,
called the delocalization time is necessary for the excita-
tion to travel from A to B. For a narrow pipe this time is
very long. But a real oscillator always has finite losses
which create damping. A given resonance decays in a
time Td =geo ', where Q is the quality factor of the res-
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FIG. l. Fractal drum and experimental setup. (a) The frac-
tal generator. (b) Drum perimeter after three iterations from a
square initiator. Fractal dimension D = —, . (c) Diagram of the
experiment: The variable frequency generator feeds a loud-
speaker which excites, through the air, the membrane acoustic
vibrations. These vibrations can be detected by the change in
the He-Ne laser reflection.

2974 1991 The American Physical Society



VOLUME 67, NUMBER 21 P H YSICAL REVIEW LETTERS 18 NOVEMBER 1991

d|I'
I

k.

kI
kl

FIG. 2. Still photograph of a localized vibration (exposure time I s). In the vibrating region the light of the grazing laser is

strongly scattered.

onance. The possibility of observing a localized mode
then depends on T, and Td. If the damping is weak
(T, & Td), the excitation can propagate from A to B. If
T, ) Td, the excitation will be damped before reaching B
and localized modes can be observed. The coupling of
two regions connected by a narrow path is shown
schematically in Fig. 3(a). A wave of wavelength A

propagates in a path narrower than A/2 with exponential
attenuation y —(a/A)exp( —xx/a) [7]. If the drums of
Fig. 3(a) were isolated, the two modes Ilr~ and ya would
have the same frequency. If the two drums were com-
municating, the eigenmodes would now be the combina-
tions @~+pe and y~ —yg and there would exist a fre-
quency splitting 6'co between the two modes. The
effective coupling between the two drums at distance h, is,
in reduced units, of order (a/A) exp( —xA/a). The
splitting between the new modes is given approximately
by pro= (ro/2)(a/A) exp( —xA/a). The inverse of the
splitting 6'co is the delocalization time T, .

In our experiment the geometry is more similar to Fig.

(a) A

3(b) in which 8 and B are coupled through a narrow
path but across a wider resonator. To evaluate the cou-
pling in this situation we use ordinary Rayleigh perturba-
tion theory [6]. With no coupling the four lower states
are yp„yp „,

„
lower symmetric and antisymmetric states

of the central resonator, and y~, yg, with the energies
Ep, Ep„,Eg, and Ea =E~. We chose to work in the
equivalent basis yp „yp„.„yz+ yp, and y~ —y~ in
which the unperturbed Hamiltonian is diagonal. If the
resonators communicate, there will exist a coupling but
only between states of same symmetry, i.e., yp „(yz
+pa) and yp„,'(I/fg pa). It is then only at the second
order in perturbation that the degeneracy can be re-
moved. The effective coupling between (y~+yti) and
(y~ —ys) is, in reduced units, of order [(a/A)
xexp( —xA/a)] . This coupling is very small resulting in

very large values for T, . Note that this effect is due to
the existence of narrow paths which are not necessarily
present in all fractal drums.

To better account for the observed effects, we have

computed numerically the lowest modes. We use the
analogy between the Helmholtz equation, Az —( I/
c )t) z/ tit =0, where c is the wave velocity, and the
diffusion equation, Az —(I/D)dz/Bt =0, where D is the
diffusion coefficient, with the boundary condition, z =0,
on the contour. The general solution of the diffusion
equation is

z(x,y, r) =pe„(x,y)exp( —X„r),

FIG. 3. Localization by damping. Top: drums coupled by a
narrow path. Bottom: succession of narrow and larger paths.
If the frequencies of the central states are not resonant with 2
or B frequencies, there exists only a very weak second-order
coupling. X/D =ro'/c'. (2)
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with +„(x,y) a solution of the eigenvalue equation A+
=(—A/D)+ or identically A%'=( —ro /c )+ provided
that
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The set of solutions (+„,A,„)is ordered by increasing
values of k„with Xo&k] &k2& . X„& . and the
modes are computed sequentially. We start from an arbi-
trary function zp(x, y, t=0) =L ' as an initial distribu-
tion and compute numerically its evolution using the
diA'usion equation. (We used a constant z =L ' where L
is the side of the square fractal initiator. ) After a given
time, due to the hierarchy of the k„'swe are left with the
wave form of the fundamental decaying with a single
time constant Xo and the fundamental frequency is found
from Eq. (2). We start again with a new initial function
z

~
that we chose to be orthogonal to 9'p(x, y), and repeat

the procedure [6]. The diffusion equation has been
discretized both in space and in time. The computation
took place on a square grid (2' inner points) compatible
with the boundary. In the case of the square drum, exact
solutions are known analytically for both continuous and
discretized equations [8] and from that we estimate
the error due to space discretization to be less than
10 . Time discretization leads to the replacement of
exp( —t/r) by a power law [exp( At/r)]'~ ',—and there-
fore can be corrected. Numerical errors are determined
by the diff'erence which we permit between the computed
modes decay and a single exponential decay. We have
chosen this deviation such that the relative accuracy on
the eigenvalue is better than 10 as verified for the
square drum. The first five lower modes of the fractal
pattern were computed. The fundamental state is shown
in Fig. 4(a). It is centered in the central part of the drum
and corresponds to 0 =2.100rpp, where rup=2'~ xc/L is

the fundamental frequency of the initiator. The figure
shows that the amplitude decays strongly from the center
towards the edges of the drum. This is shown in Fig.
4(b) where the logarithm of the amplitude is represented.
The fact that the slope of the "mountain" increases when

reaching the deepest bay is a confinement eAect reminis-

cent of a superlocalization behavior [9] and will be dis-
cussed in more detail elsewhere [10]. Note that the ir-

regularity of the frontier of the drum markedly shifts the
fundamental mode to a higher frequency.

The next four modes with frequencies of 0 ] 02
=3.132coo, A3 =3.191mo, and 04=3.219coo are shown in

Fig. 5. From these values the delocalization time T, is of
order —40rup '. From the width of the experimental
response a quality factor of order 10 was measured. This
gives Td-10coo & T„which is the condition for locali-
zation by damping. None of these modes are localized
but a localized linear superposition of these modes is

shown at the bottom of Fig. 5. It compares favorably
with the photograph of Fig. 2. The experimental value of
the frequency of this mode is found to be equal to 1.70p
instead of 1.540p, as predicted using the above numbers.
The discrepancy can probably be attributed to a small ad-
mixture of a higher excited state [10]. The computed
wave forms also confirm the existence of singularities
very near the wedges: The derivatives of the wave form

(a)

(b)

FIG. 4. Top: Wave form of the fundamental vibration. Bot-
tom: logarithm of the wave form showing a faster than ex-
ponential decay of the amplitude towards the edges of the
drum. The value of the logarithm has been truncated below a
finite value.

FIG. 5. Second to fifth excited states. From top to bottom,
state 2 or 3 (degenerate through a rotation of zc/2), state 4,
state 5, and a localized linear combination of the second to the
fifth excited states. This image is to be compared with Fig. 2.
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are infinite at salient points [11].
In conclusion, we have shown both experimentally and

numerically that fractal boundaries may alter drastically
the spatial character of waves. The geometry imposes a
very strong spatial decay of the wave form inside fractal
cavities. The modes are shifted to higher frequencies and
the wave form shows singularities on the frontier.

A few tentative comments can be made because of
these results. These effects should appear in the vibra-
tions of rough microcrystalline atomic arrangements, as
the internal interfaces in mixed glasses [12] may natural-
ly possess the fractal geometry of diA'usion fronts [13].
The quantum states in small-scale irregular structures
like porous silicon, a material of possible fractal geometry
[14], should also show the same characteristics.

Current knowledge about waves and resonators indi-
cates that small changes in the boundary geometry of
resonators can modify strongly the damping properties.
High-quality-factor wave guides and microwave cavities
are polished. Irregularities in the geometry of the bound-
ary cause singularities in the electric field which can lead
to dielectric breakdown. Coastline engineers use porous
structures empirically made of disordered heaps of rocks
of various sizes, to absorb energy when designing break-
waters [15]. The geometry of anechoic chambers is
another possible illustration. In physical systems bound-
ed by fractals, nonlinear effects should be present due to
the existence of singularities on the wedges. For all these
reasons, fractal structures should be ei%cient in damping
vibrations and waves. This can be the key to a "self-
stabilization" of many of the fractal structures found in

nature.
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