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We run all the couplings of the minimal supersymmetric (SUSY) extension of the standard model,
taking account of the Yukawa sector. After identifying the scale at which the gauge couplings unify, we
place bounds on the top-quark mass by requiring equality of the bottom-quark and ~ Yukawa couplings
at that scale. For M&Us&=1 TeV, MI, =4.6 GeV, we find 139~M ~ 194 GeV, which remarkably
satisfy the p-parameter bound. Furthermore, using the minimal SUSY boundary condition on the scalar
quartic coupling, we obtain bounds for the mass of the Higgs boson, 44~ MH;«s ~ 120 GeV.

PACS numbers: 12.10.Dm, 11.30.Pb, 14.80.Dq, 14.80.6t

In this Letter we present bounds on the mass of the top
quark in a minimal supersymmetric extension of the stan-
dard model (MSSM) with minimal Higgs structure in
the context of a grand unified theory (GUT) by numeri-
cally evolving the couplings using their renormalization-
group equations. This analysis improves on previous en-
deavors by taking full account of the Yukawa sector. A
more detailed account of the method will be presented in
a subsequent paper [1]. Here we present our results and
give a brief description.

The modified-minimal-subtraction (MS) renormaliza-
tion-group equations for the standard model and the
MSSM [2] are numerically integrated and used to evolve
the parameters of the model to Planck scale. Although it
is not possible to analytically express certain parameters
(e.g. , Cabibbo-Kobayashi-Maskawa angles) in terms of
the Yukawa couplings, equations for the running of the
quantities themselves can be arrived at by making some
approximations. Typically one assumes that the contri-
bution of the Yukawa couplings is essentially given by the
top-quark one, yI, since it is larger than the others. Oth-
erwise one can retain the eff'ects of the other Yukawa
coupling by keeping only the diagonal entries, but since
our approach is numerical we opt to run the quantities by
diagonalizing the Yukawa matrices at every step of the
Runge-Kutta method.

In the expectation that the standard model is only the
low-energy manifestation of some yet unknown GUT or
of a possible supersymmetric (SUSY) extension thereof,
the three couplings g3, g2, and g] corresponding to the
standard model gauge groups, SU(3)'X SU(2) XU(1)
should meet at some large grand unification scale. Our
study begins here. Using the accepted values and associ-
ated errors of these couplings, we observe unification in
the SUSY GUT case but not in the pure GUT case, as
noted by several groups [3,4] (see Fig. 1). However, this
should not be viewed as proof of supersymmetry since,
given the values of ai, a2, a3 at some scale, and three un-
knowns (the value of a at the unification scale, the
unification scale, and an extra scale such as the SUSY
scale), there is always a solution. The exciting aspect of

the analysis of Ref. [3] is the numerical output, namely, a
low SUSY scale, M~pgy, and a perturbative solution
below the Planck scale which does not violate proton de-
cay bounds [5].

Furthermore, in the context of a minimal GUT [6]
there are constraints on the Yukawa couplings at the
scale of unification. In this Letter we first restrict our-
selves to an SU(5) SUSY GUT [7] where yt, and y„the
bottom and r Yukawa couplings, are equal at unification.
The crossing of these renormalization-group flow lines is
sensitive to the physical top-quark mass M, . This can be
seen in the down-type Yukawa renormalization-group
equation (above Mspsy, for example), from which we ex-
tract the evolution of yb, since the top contribution is
large and appears already at one loop through the up-
type Yukawa dependence:

dYJ
dt 2 Yd[3Yd Yd+Y„Y„+Tr(3YJYJ+Y„Y,, )

16m

—( i's gi'+3g2+ Vg3)],
where Y„d,are matrices of Yukawa couplings. De-
manding that their crossing point be within the
unification region determined by the gauge couplings al-
lows one to constrain M, . This yields an upper and a
lower bound for M, which nevertheless is fairly restric-
tive.

Let us now briefiy describe our method [1]. We work
in a mass-independent renormalization scheme where the
running couplings are unphysical. From the decoupling
theorem [8] we expect the physics at energies below a
given mass scale to be independent of the particles with
masses higher than this threshold. Therefore for a
correct interpretation of these running couplings we must
take into account the thresholds [9-11]. For the elec-
troweak threshold we use one-loop matching functions
[11] with the two-loop beta functions valid in the stan-
dard model regime below the SUSY scale. These match-
ing functions are obtained in MS renormalization by in-
tegrating out the heavy gauge fields in such a way that
the remaining eA'ective action is invariant under the resid-
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the same scale. It would be interesting to study the efIect
of lifting this restriction. We should also note that our
bounds on the top mass are very similar to those of Ref.
[15], although the physics is very different. We plan to
return to these issues in a forthcoming paper [I]. Howev-
er, given the relative crudeness of the approximations in
this paper, it is remarkable that the experimental bounds
on the p parameter were satisfied, which in our mind
gives credence to our program.
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