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Novel Signature of Chaos in Quantum-Mechanical States

NUMBER 21

F. Leyvraz, J. Quezada, and T. H. Seligman
Instituto de Ftsica, Laboratorio de Cuernavaca, University of Mexico (UlVAMA, Apdo posta. l 20-364,

01000 Mexico Distri to Federal, Mexico

M. Lombardi
Laboratoire de Spectrometric Physique, Universite Joseph Fourier-Grenoble l, B.P. 87,

38402 Saint -Martin-d'Heres CFDEA; France
(Received 24 May 1991)

A quantity related to the elastic enhancement in nuclear reactions is introduced to analyze how the
transition from integrable to chaotic behavior in a classical system is reflected in the eigenstates of the
corresponding quantum system. Its behavior is first studied for random matrix models believed to repre-
sent such a transition, namely, a band matrix ensemble as well as a Poisson ensemble perturbed by a
Gaussian orthogonal ensemble. Both of these display similar behavior. We then show that the same
characteristics may be found in a more realistic system showing such a transition, namely, molecular
Rydberg states calculated for high angular momenta.
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In recent years there has been considerable interest in

the behavior of quantum systems, the classical counter-
part of which show chaotic behavior. Most of these stud-
ies focused on the energy spectrum [1-3]. The Gaussian
orthogonal ensemble (GOE) has proven to be a good
model for the fluctuation properties of such spectra. The
spectra of Hamiltonians with a behavior intermediate be-
tween integrable and chaotic have also been studied by
similar models [4] with good agreement. On the other
hand, the situation is far more confusing with respect to
the eigenstates of such Hamiltonians. The reason for the

difhculty is the arbitrariness in the choice of basis. In
particular, many peculiar and system-dependent features,
such as "scars, " have been observed in specific bases
(coordinate space [5), Wigner functions [6], and others).
However, a general characteristic of states displaying the
universal aspects of the transition from order to chaos is
still absent.

To this end we consider two arbitrary orthogonal vec-
tors p and y, and construct the following quantity:

(, ) I vlv t (I)
I&yItir(t))I'
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where Iy(t)) denotes e' 'Iy) and H is the Hamiltonian
under consideration. The quantity we are interested in

will be the time average Q of q(t) for large times. The
physical interpretation of this quantity is straightforward:
it denotes the degree to which an arbitrary state will over-
lap with itself at large times, compared to the degree with

which it will overlap with any other state orthogonal to it.
This is related to the well-known concept of elastic
enhancement in the weak absorption limit of nuclear re-
actions. An appropriate energy average of this quantity
is usually expected to be equal to 3 [7], as will be
confirmed by our findings.

If we denote by p; and y; the components of p and y
with respect to the eigenbasis of 0 and N is the dimen-
sion of the underlying Hilbert space, one finds

E=| I w I'
E=iIv I'I I'

This only depends on the orientation of p and tlt with

respect to the eigenbasis, and not at all on the behavior of
the eigenvalues. If the quantity Q is averaged over all

vectors, the value obtained is very close to 3, for large N,
independent of the properties of H. If the denominator
and the numerator are averaged over separately before
taking the quotient, it has also been shown [8] that Q is

exactly 3 for any N.
Yet beyond these properties we find a self-averaging
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behavior which is due to the sum in Eq. (2). Indeed in

the limit of N ~ the value of Q is 3 for almost any
pair of vectors on the unit sphere. This follows from two
considerations [7], both valid in the limit of large N:
First, the coordinates of any vector are in a first approxi-
mation independently Gaussian distributed; second, the
coordinates of two orthogonal vectors are also indepen-
dent of each other. Both of these remarks become intui-
tively clear, if it is noted that the only constraints on
the coordinates are normalization and orthogonality.
Thus one finds, up to higher-order terms in N, that
&i~ ilier(l is equ» to N&&IVil && and & =i Ilier I IA I «
N(([ y~ ( (P~ ( )), where the double angular brackets
denote an average over a Gaussian distribution. This
proves our statement and incidentally also the much
weaker statement made in the previous paragraph.

From this follows that Q gives an indication as to
whether a pair of vectors is random with respect to the
eigenvectors of H or not. In the former case, the value of
Q should be 3 whereas in the second case it should be
diA'erent and generally large [9]. Thus the following test
for chaos can be performed: Consider two orthogonal
wave packets localized with respect to some particular
observable (e.g. , position, momentum, or any combina-
tion of these). The value of Q for these two wave packets
should be 3 in a chaotic system, since there is no relation
between the eigenfunctions of 0 and any wave packet
defined independently from the eigenfunctions of H. On
the other hand, in an integrable system, the value may be
much larger, since semiclassical wave functions corre-
spond roughly to wave packets localized on the tori of the
classical system. In this sense, the quantity Q is similar
to the inverse participation ratio, which measures the lo-
calization in a given basis. Indeed, the numerator of Q is

exactly the inverse participation ratio. Note that in this
particular way of using Q, we have not entirely gotten rid
of the basis dependence, since we must choose the wave
packets according to some criterion usually dictated by
the physics of the system. %e shall return to this ques-
tion later.

Up until now we have discussed the case of a specific
Hamiltonian. Let us consider, instead, what happens if
we look at ensembles of Hamiltonians such as the GOE
and its variants that have been used to describe transition
from order to chaos. The GOE is defined as the ensemble
of matrices having all oA-diagonal elements independent™
ly Gaussian distributed with the same variance and mean
zero and the diagonal elements are distributed indepen-
dently with twice the variance. This gives rise to an en-
semble of matrices, the eigenvectors of which are uni-
formly distributed over the unit sphere.

To study the transition from order to chaos the follow-
ing models have been used: To describe an integrable
system we use an ensemble of matrices with fixed eigen-
vectors and random independent eigenvalues. To de-
scribe intermediate situations, one uses the two following
models: the Porter-Rosenzweig model [10], where one

takes

h;, =g;~ [6;~+X(l —6';~)], (3)
where g;~ denotes matrix elements from a GOE matrix
and k is a transition parameter. We also consider the
band matrix model [4], which is given by

h;, =g;, exp[ —(i —j) '/o'], (4)
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FIG. l. Distribution of Q f'or a GOE with the space dimen-

sion equal to 160.

where o. now plays the role of the transition parameter.
Note that neither of these definitions is basis invariant.
In particular, in both of these ensembles, the eigenvectors
are in some sense localized with respect to the particular
basis in which they are defined. The way in which this
takes place, however, is quite diA'erent in the two cases:
In the band matrix model, the eigenvectors have a peak
at one given point i and decay as the distance to i in-
creases. In the Porter-Rosenzweig model, on the other
hand, the eigenvectors consist of one peak at a point i to-
gether with a weak background uniformly distributed
over all other basis vectors. In this case, it is not obvious
how to define such a concept as that of localization
length, for example.

In studying ensembles, as opposed to isolated Hamil-
tonians, there is a basis-independent characterization of
chaos, as we now show. To see this, fix two orthogonal
vectors ~p) and ~y) and then proceed to evaluate the dis
tribution of Q given the distribution of H. If the ensem-
ble of H is a GOE, the distribution of Q is going to be the
same as the distribution of Q for an ensemble of vectors
uniformly distributed over the unit sphere. That is, it is
going to be fairly sharply peaked at a value of 3, and will
have a variance that goes to zero as const & A ' . Yet
this variance cannot at all be neglected in practical situa-
tions. Figure 1 shows that the variance is still significant
for W =160, and thus the constant is quite large.

In cases where the ensemble is intermediate, however,
some distinctive features appear. First, the distribution
of Q is no longer independent of the vector pair chosen.
Rather, it shows an increasing degree of variability as the
integrable case is approached. In Fig. 2 we display the
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FIG. 2. Distribution of g for two vector pairs in the band
matrix model with cr equal to 0.5 and space dimension equal to
160. Note the variation in the shape, as well as the diA'erence
from Fig. 1.

TABLE I. Mean and variance of the distribution of Q for
various values of N and a for the band model. We have also
performed the same study on the Porter-Rosenzweig model,
with virtually identical results.

distribution of Q for an intermediate case. We note the
following features: First, the distribution of Q changes
quite markedly as we vary the vector pair.

To be more quantitative we now consider the average
M(p, y) =(Q) and the variance Z(p, y) =(Q &

—(Q),
where ( ) indicates an average over the ensemble of Ham-
iltonians. These two quantities, considered for diA'erent
vector pairs p, y, have a significant correlation as may be
seen in Table I. Furthermore, the variance has a tenden-
cy to increase as we go from integrable to chaotic.
Indeed for a fixed pair of vectors, Q shows no variance at
all in the Poisson ensemble. This follows from the fact
that the eigenbasis in the Poisson ensemble is taken to be
fixed and that Q only depends on the coordinates of the
two vectors in the eigenbasis [see Eq. (2)]. As the system
becomes more and more chaotic, the eigenbasis varies
more and more, and so does Q. However, it should be
said that this tendency is not always unambiguous. In
the intermediate regime, Z(g, y) can be quite large. It
also then has an anomalously large average value, and the
distribution function will be markedly diN'erent from the
one observed for the GOE.

To complete our quantitative understanding we can

TABLE II. The four characteristic quantities M, var(M), Z,
and var(Z), given for 1V= I60 and various values of cr for the
band model as well as for Rydberg molecules in the "near-
integrable" and chaotic cases. Note that X is much larger than
for the band matrix model because there N is 41 rather than
160. In both cases, in the chaotic regime, var(Z)/Z does not be-
come zero because of the finite number of vector pairs used for
the average (160 and IO, respectively).

var(M) var(Z)

next study the behavior of M and Z as we average over
the vector pairs p, ilr. Such averages will be indicated by
overlining. Consider the quantities M, var(M) =M
—M, Z, and var(Z) =Z —X . For a GOE var(M) is
zero and becomes increasingly larger as we approach in-

tegrability. The size of this signature decreases with
N ', in consequence of the fact that Q is almost always
equal to 3 for large N, independently of the ensemble.
Close to integrability, however, the tail of the distribution
is noticeable (with good statistics) even for fairly large N.
Table II shows these four quantities for %=160 for
diA'erent values of the transition parameter o in the band
model, together with similar quantities for a physical sys-
tem discussed belo~.

As we may expect from the above remarks, M is al-
ways about equal to 3 and varM decreases as one goes
from integrable to chaotic. X is very small for a near-
integrable situation and increases monotonically to its
GOE value, but var(Z) has a maximum value somewhere
between complete chaos and integrability. It must be
zero for both extremes.

Thus we have found quite well-defined signatures of
chaos for ensembles of Hamiltonians. Yet if we wish to
apply this to a fixed Hamiltonian, we will have to invoke
ergodicity in some way to replace the ensemble average
by an energy average as we usually do when discussing
spectra. But here we find a difficulty: How do we main-
tain this "fixed pair of vectors" which we use throughout
our previous argument when varying the energy? Let us
first turn to our starting point, the elastic enhancement in

nuclei. There the functions in question are channel func-
tions defined at some distance from the interaction
region —we could imagine in a way a projection of the
internal functions on a channel hypersphere. The radial
function which determines the energy is integrated over
in each channel and thus the overlap with any given
channel is well defined for all energies far from thresh-
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olds.
Applying this idea, say, to a billiard we could think of

wave packets with fixed location and a wave vector k with
given angle but variable absolute value k. k will deter-
mine the energy of this state, and, invoking ergodicity, we
can simulate an average over an ensemble of Hamiltoni-
ans by averaging over k, for such a wave packet or any
superposition thereof. Averages over vector pairs, as dis-
cussed above, would have to be averages over pairs of
random superpositions of such packets.

We shall try to implement such a program for Rydberg
molecules. A Rydberg molecule is considered as a cylin-
drically symmetric charge with a net value of +1 as a
core and a single electron moving on Rydberg-type orbits
whenever it is far from the core. For periods of the elec-
tron orbit of the same order of magnitude as those of the
core the Born-Oppenheimer approximation breaks down.
The absolute value L of the electronic angular momen-
tum L is approximately conserved but the rotational
motion of the core and the radial motion of the electron
are coupled and thus one (approximately) conserved
quantity is missing to make the system (almost) inte-
grable and thus we can find chaos for 2 degrees of free-
dom. The classical limit of the approximate system that
conserves L exactly can be constructed [11] and its be-
havior discussed. If the frequencies of the core and elec-
tron are in resonance, the system becomes near inte-
grable, as the Born-Oppenheimer approximation is again
almost valid due to the stroboscopic effect [11]. In this
case Kolmogorov-Arnol'd-Moser (KAM) tori are only
destroyed in a very small region. OA' resonance and
choosing an adequate coupling constant we find essential-
ly complete classical chaos.

This simplified classical model was derived as a limit
from the multichannel quantum defect method (MQDT)
which allows fairly simple calculations of eigenvalues and
of the projection of eigenfunctions on the (2L+ 1)-
dimensional space spanned by the angular part of the
electron wave function. This space splits due to invari-
ance of the potential with respect to reAection by a plane
containing the molecular axis, into a (L+1)- and L-
dimensional subspace [11]. Taking this into account one
conveniently introduces a labeling of the basis in terms of
projections A of L on the molecular axis. While experi-
ment at this point corresponds to fairly small values of L,
we chose the (L+1)-dimensional subspace for L =40 in
order to have a larger number of projections. The calcu-
lations are discussed in detail in Ref. [12]. A quasi-
periodicity of L+1, corresponding to a unit increase of
the average principal quantum number n of the Rydberg
series, dominates spectra and intensities in both the regu-
lar and irregular domains of classical motion.

To test our methods on this system, we have performed
the following calculations: First, we considered states
with fixed value of A. For these it was found that the
value of Q was, to a good approximation, equal to 3 in the
classically chaotic regions, whereas it rose to exceedingly
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high values (Q»1000) in the "near-integrable" regions.
This indicates that the eigenstates of the Hamiltonian can
truly be thought of as random in the chaotic region, at
least in the angular momentum basis, whereas this is not
the case in the integrable region and thus the basis-
dependent test proposed at the beginning of this paper
works very well in this case.

We next proceed to apply the basis-invariant tests pro-
posed for ensembles following the ideas put forward
above. We divide the spectrum into blocks of size 41, and
replace the average over ensembles of Hamiltonians—invoking ergodicity —by averages over blocks. Because
of the "near periodicity" in spectral properties mentioned
above, it is reasonable to assume that two vectors in
diA'erent blocks, but with identical projections, are indeed
"the same" with respect to this particular Hamiltonian.

We can then proceed to calculate the quantities M,
var(M), Z, and var(Z). The corresponding results are
shown at the end of Table II both for the very chaotic
oA-resonance and for the near-integrable on-resonance
case. The average over pairs, indicated by the overbar, is
taken within each of these forty-one-dimensional sub-
spaces defined by the blocks.

Comparing the results for Rydberg molecules in Table
II with those for the random matrix ensembles we find
the expected behavior for all quantities if we take into ac-
count the poor statistics. The results for molecules are
only shown for the two extreme cases, because the transi-
tion from order to disorder is rather abrupt in this case.
The present numerical results are insufhcient to deter-
mine the quantities in question for the transition, al-
though more extensive calculations for Rydberg mole-
cules near resonances are planned.

For a specific physical system the question of the ex-
istence of scars [5] arises. The question how the criteria
developed here behave with respect to scars can only be
answered by studying a system whose scar structure is
known. This structure has not yet been well established
for Rydberg molecules, although the near periodicity is a
hint that some unusual structures must exist. These will
be analyzed to some extent in Ref. [12], but at this point
we can only say that the numbers we find in the last two
rows in Table II are consistent with insensitivity to, or ab-
sence of, scars.

Summarizing, we have found criteria for the transition
from a GOE to a Poisson ensemble of Hamiltonians that
can be applied in a basis-independent fashion to wave
functions. Furthermore, we have pointed out sufficient
criteria for single Hamiltonians. To apply them either
one has to infer something about KAM tori and thus in-
troduce a weak basis dependence or one has to be able to
perform an energy average by formulating a family of
states or projectors that can reasonably be "shifted" in

energy, i.e., a way must be found to transform a given
vector or projection to a diff'erent value of the energy
without changing its essential characteristics. While this
is clearly somewhat vague, in practical applications such
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a way can usually be found if the system scales over a
sufficiently broad range of energies, which is a necessary
condition even for the analysis of spectra. For Rydberg
molecules it was shown that both types of criteria can be
successfully applied.
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