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Dynamics of an Excited Electron in a Cuprate Antiferromagnet
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We find that the linewidth and energy of an electronic excited state in a cuprate semiconductor in-

crease linearly with increasing temperature. %e model this change as due to interactions of the bound
electrons with bosons in the antiferromagnetic lattice. The coupling constant between the relaxation
rate and the thermal energy is of order 0.5, similar to that for free carriers in superconducting cuprates.

PACS numbers: 74.30.Gn, 78.30.Er

The frequency-dependent conductivity of high-tem-
perature superconductors in the metallic state has been
recently modeled as a sum of two components [1-5]:
first, the mobile carriers and, second, a direct absorption.
The mobile carriers are scattered by static and dynamic
disorder arising from fluctuations in the electronic, lat-
tice, and spin systems. This same dynamic disorder can
lead to direct absorption (if its symmetry gives rise to
finite matrix elements). Some analyses have modeled the
conductivity without including the direct absorption
[6-9], and some have argued that it is a large contribu-
tion [1-5]. None has determined its temperature depen-
dence, although there are hints that some is present [3].

We have investigated the direct absorption by lowering
the charge density to eliminate the mobile carriers. We
find that one component of the absorption has a relaxa-
tion rate that increases linearly with temperature. This
result is important because both its magnitude and func-
tional form are similar to the behavior in the metallic
state of the mobile carriers of similar materials as seen
[1-8] in the linear dc resistivity and linear scattering
rate. Bur observations do not, by themselves, settle the
question of the origin of the linear relaxation in either the
metal or the insulator. We are aware that the behavior in

the metal and insulator will be different. However, we

argue that the similarity is suggestive, and that the spec-
tral density of fluctuations in the insulating state may be
helpful ia understanding the high-temperature supercon-
ductors.

The optical reflectivity of single crystals of Nd2Cu-

04 —,with y of order 0 and 0.03 has been measured. Un-
polarized light has been used at an angle of incidence
nearly normal (12 ) to the Cu-0 planes of the crystals,
and the frequency has been varied over a range from
about 3 to 3000 meV using a Michelson interferometric
spectrometer. The temperature of the sample and a cali-
brated Au reference mirror has been varied from 10 to
300 K.

In the doped sample (y —0.03) new absorption appears
in the energy region below the semiconducting band gap
due to the 0 vacancies added to the Nd2Cu04 system.
We attribute this absorption to excitations of the elec-
trons (bound to the vacancies) from their ground state to
excited states and the continuum. One of these lower-
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FIG. 1. Optical reAectivity R as a function of photon energy
E at several temperatures T, as indicated. The sample is a crys-
tal of Nd~Cu04 —,for a small density of 0 defects (y —0.03).

energy transitions has a strong temperature dependence,
while the other features in the spectrum do not. This
feature is also particularly interesting because a resonant
absorption at about the same energy (100 to 200 meV)
persists into the metallic state of similar materials [1-5].

Figure 1 shows one set of the raw-data curves. The
reflectivity R is plotted on an expanded scale as a func-
tion of energy F. (or frequency ro) for a series of tempera-
tures, T. We shall concentrate on the change with T of
this peak. We have reproduced this behavior in four sam-
ples. While the measurement of R establishes that the
peak is T dependent, we have extracted the real part of
the conductivity to fit the spectrum more easily. To do
this, R was measured over a wide frequency range,
extrapolated at frequencies below 3 meV to our estimate
of the dc conductivity [(10 (Acm) '], and extrapo-
lated above 3 eV from our high-frequency R with the
conventional (ro ) form. The real parts of the conduc-
tivity rr and dielectric constant s were then calculated us-

ing the Kramers-Kronig relation, and representative
curves are shown in Fig. 2.

The conductivity spectrum was fitted with a set of
charged harmonic oscillators, with index i =I,J,K, reso-
nant energy E;, half width I;, and strength cop;, with the
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resolved. Measurements at lower density may show such
structure, but our motivation is to try to understand the
behavior at higher density, and, from this viewpoint, the
data here are of greater interest since they are similar to
the resonance seen near J in the metal [1-6]. Second, if
we treat the line as arising from one transition, the width
at 10 K is equivalent to a lifetime of 2.2x10 ' sec. One
speculation is that the electronic transition may involve a
spin rearrangement (with no net spin flip). The lifetime
would then be related to the relaxation of the surrounding
spins. For comparison, the full width at half maximum of
the two-magnon peak seen in Raman scattering [10] in

the same crystal is 185~5 meV. Third, the electron is

also coupled to the lattice excitations in perhaps a similar
fashion to the Frank-Condon effect [12]. The electronic
transition near J may, therefore, be describable with a
general, polaronic model [12], including both spin and

lattice relaxations.
Two additional fits to the line shape have been con-

sidered. The first is to use the Lorentzian form but to as-
sume that I 0 is frequency dependent. A linear depen-
dence has been chosen by analogy with the linear T
dependence. Over the limited range of frequency that we

can analyze with reasonable certainty (between the pho-
non absorption and the higher-energy electronic impurity
bands), this fit is indistinguishable from that with a con-
stant I, and has the form

I =-co+3kggT. (3)

I M =I ]+2.5kgT. (4)

This result in the metal is strikingly similar to the width

A second fit attempted was with the line shape used for
the finite-frequency excitation within a marginal-Fermi-
liquid parametrization of the metallic state [6]. This
form has a number of qualitative similarities to our obser-
vations, including a linear T dependence and a peak at
finite frequency. It also treats both temperature and fre-
quency on an equal footing in the electron dynamics. Al-

though the results both here and in the metallic state
both seem to argue for a broad excitation spectrum of
this generic type, the particular form involving a
tanh(co/2T) is noticeably different from our data at low

T. This result does not rule out the "tanh" form in the
metal because the excitation spectrum may change be-
tween the insulating and metallic states. However, the
case discussed here provides a stringent test of the func-
tional form in the insulator with small doping because the
finite-frequency peak dominates the spectrum. (In the
metal, the free-carrier contribution dominates the spec-
trum [1-9].)

There is a similarity between the behavior of I mea-
sured here and the width of the peak at zero frequency in

metallic Ba2YCu306+, , for y —1. The Drude-like absorp-
tion due to mobile carriers has a half width I M, whose T
dependence can be described [1-9]by

in the insulator described by Eqs. (2) and (3). In the
most heavily doped metals, the constant I ] is of order of
the peak position, I i

—0, while here, I 0 is also of order of
the peak position Eo. If the metallic case is modeled
[4,7] as scattering of the nearly free carriers from a low-

energy boson, then the thermal energy term in the
scattering is 26.kqT, where X is the electron-boson cou-
pling constant, and Eq. (4) implies k —0.4. By analogy,
we expect that if a similar analysis can be applied to the
metallic and bound-carrier cases, the electron-boson cou-
pling constant in the insulator for our observed parame-
ters [Eq. (2)] will be

The broadening of the peak with T is qualitatively
similar to changes seen in nonmagnetic and magnetic-
doped semiconductors [12]. In both cases, the eflects
have been discussed in terms of polarons. A polaronic
type of model can describe a linear T dependence of the
linewidth, and such a model including both spin and lat-
tice excitations may prove useful in understanding the cu-
prates [11,12]. The small shift in EJ with T and the con-
stancy of the spectral weight provide added constraints on
such theories.

We conclude that the electronic transition near J in-

volves a bound charge coupled to the nearby spin and lat-
tice excitations. The relaxation of this coupled charge
has striking similarities to the scattering of free carriers
in the high-T, superconductors.
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