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Violations of a Simple Inequality for Classical Fields
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It has been shown that two correlated photons incident upon two distant interferometers can give a
coincidence counting rate that depends nonlocally on the sum of the phases of the two interferometers.
It is shown here that the results of existing experiments violate a simple inequality that must be satisfied
by any classical or semiclassical field theory. The inequality provides a graphic illustration of the lack of
objective realism of the electric field.

PACS numbers: 03.65.Bz, 42.50.Wm

It has been shown [1,2] that two-photon interferometer
experiments can violate Bell's inequality [3] and a num-
ber of experiments [4-7] have demonstrated effects of
that kind. Current experiments based upon the two-
photon interferometer of Ref. [1] have not, however,
violated Bell s inequality due to the limited visibility
(S0%) of the interference fringes that results when the
resolving time of the photon detectors and electronics is
not sufficiently fast. It will be shown here that those ex-
periments do violate a surprisingly simple inequality that
must be satisfied by any classical or semiclassical field
theory. The inequality follows directly from the assump-
tion that the classical field has some well-defined value
and thus illustrates the lack of objective realism exhibited
by the quantum-mechanical field.

The experiments of interest [4,S,7] are outlined in Fig.
1. Two coincident photons are emitted by parametric
down-conversion [8] and travel in different directions to-
ward two identical interferometers. Each interferometer
contains a shorter and a longer path, and the difference
AT in transit times over the two paths is taken to be
much larger than the coherence time of the photons.
Nevertheless, interference between the quantum-me-
chanical amplitudes for the photons to have both traveled
the shorter paths or the longer paths produces a modula-
tion in the coincidence counting rate R, given [1] by
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Here R,o is the coincidence rate with the beam splitters
removed, 6] and 92 are phase shifts introduced into the
two longer paths, and mo is the frequency of the pump
laser. Equation (1) violates Bell's inequality but is only
valid if the resolution of the coincidence measurements is
better than AT. The maximum visibility is 50% for time
resolutions much worse than AT.

There has been considerable debate as to whether or
not the experiments with visibilities of 50% or less are
nevertheless inconsistent with any semiclassical field the-
ory. Ou and Mandel [9] have suggested that that is the
case but counterexamples to their argument have been
given by Carmichael [10] and by Chiao and Kwiat [11].

Although their semiclassical models are able to reproduce
the modulation in the coincidence rate, they are not able
to represent the fact that the photons are known from
other experiments [12] to be coincident to within a time
interval much smaller than AT. That provides the physi-
cal basis for the inequalities derived below.

The desired inequality is a generalization of Cauchy's
inequality [13],according to which

ab ~a2 (2)

where a and b are real numbers. When a and b are com-
plex we still have

I~b I
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The modulation of the coincidence rate in a classical
treatment of the two-photon interferometer experiments
will be found to be proportional to the quantity Q defined
by

a =E~*(r)E&(r aT), —

b =E2 (r)Ei(r AT) . —
(S)
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FIG. 1. Two-photon interferometer.

Here E[ and E2 refer to the fields at the positions of
detectors 1 and 2 (which will be assumed to be equidis-
tant from the source) with the beam splitters removed
and the angular brackets denote an average over a long
time interval. The desired inequality can be obtained by
choosing
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Inserting Eqs. (5) and (6) into Eq. (3) immediately gives

(IEi (i)E& (i)E2(i AT)Ei(i AT)l)

~ (E~*(i)E2 (i AT—)E2(i AT—)E)(i))I2

+(E,* (i)E,* (i —AT)E (i —AT)E2(i))/2. (7)
Somewhat analogous inequalities based instead on the
Schwarz or Cauchy-Schwarz inequality have been previ-
ously derived by Glauber, Titulaer, and Clauser [14].

The physical significance of the above inequality can be
illustrated by the extreme situation shown in Fig. 2, in

which both fields E
~ (i) and E2(i) correspond to narrow

pulses emitted at the same time. If E[ is evaluated at
time t and E2 is evaluated at time t ~AT, as illustrated
by the arrows in the figure, then one or the otner of the
fields must be zero and their product vanishes. The
right-hand side of Eq. (7) is then zero, which requires
that the left-hand side also vanish. Although this in-

equality may seem trivial in nature, it is a consequence of
the fact that the classical fields are well-defined (com-
plex) numbers; the inequality is violated by quantum
fields, as will be discussed below.

The inequality of Eq. (7) will now be used to set a limit
on the amount of modulation that can occur in a classical
treatment of the two-photon interferometer experiments.
Once again, let E~(i) be the classical field that would ar-
rive at detector 1 in the absence of the two beam splitters
and assume for the moment that the half-width w of the
coincidence window is negligibly small. The correspond-
ing coincidence rate as a function of the time oA'set r is

t+ hT

Field
amplitudes
E, and E2
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FIG. 2. A pair of classical coincident pulses.

then

R„(r) =q(t, (i)t (i+ r ))

=g(Ei (i)E~ (i+r)E~(i+r)Ei(i)), (8)

where Il and I2 are the intensities of the two beams and
the constant g is related to the detection e%ciencies and
w. With the insertion of the two beam splitters, the total
electric field ET ~ (i) at detector 1 becomes

E, = —, [E (i)+e 'E, (i —AT)].

A similar expression exists for the total field at detector 2
and the classical coincidence rate R, with the beam split-
ters inserted and z =0 is given by

R, = ', n(I [E,(i) +e'"—E, (i AT) 1 [E,(i) +e—'"E2(i —AT) ] I
'&.

Multiplying out all the factors in Eq. (10) gives a total of sixteen terms:

Rc =
)6 7/(E ]* (i)E2* (i)E ( (i)Ep(i) +e E ] (i)Ep (i)E ] (i)E2(i AT)

+e E I (i)E2 (i)E[(i AT)E2(i) +e Ef (i)E2 (i)E i (i —»)E2(i —AT)

+e ' 'E~ (i)E2 (i AT)E~(i)E2(i)+E] (i)E2 (i AT)E~(i)Ep(t AT)—
+e El (i)E2 (i AT)E)(i AT)E2(i)+e El (i)E2 (i —AT)Ei(i —AT)E2(i —AT)

+e ' 'E~*(i —AT)E2 (t)E)(i)E2(i)+e' " "'E~ (i —AT)E2 (i)E~(i)Ei(i AT)—
+E ]* (i AT)Ep (i)E](i AT)E2(i) +e E ]* (i AT)E2 (i)E ~ (i AT)E2(i AT)

+e ' ' E~*(t —AT)E2 (i AT)E~(t)E2(i)+e —'E~ (i —AT)E2 (i —AT)E~(i)Eq(i —AT)

+e '"E
~

(i AT)E2*(i —AT)E ((i —AT)E2(t)+E)*(i —AT)E2 (i —AT)E) (i —AT)E2(i —AT)) .

As suggested by Eq. (1), the experiments can be performed in such a way as to measure the averaged coincidence rate
as a function of HT =0[+02.

The averages over 0i and 8& were explicitly performed in one of the experiments [7], while thermal drifts had the elfect
of averaging over the phases in the remaining experiments, since the individual phases were not directly measured and
had essentially random values from one run to the next. In any event, the terms in Eq. (11) with phase factors of
exp(i8~), exp(i02), exp[i(9~ —Oq)], etc , average to. zero, leaving only those terms with no phase dependence or a depen-
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dence on OI+02. The remaining terms can be written as

R, =
g rt&Ei*(t)Ez (t)E2(t)Ei(t))+ 8 @&ED (t)Ep (t A—T)E2(t A—T)Ei(t))

+ [g rl [e '&E ) (t)E2 (t )Ep(t —AT)E ) (t —AT)) +c.c.]

where the average over a long time interval ensures that

&E( (t AT—)E2 (t AT—)E2(t —AT)E)(t —AT)) =&E(*(t)E2 (t)E2(t)E)(t))

and the symmetry of the two beams gives

&E( (t)Ez (t AT—)E2(t AT)—E((t)) =&Ep (t)E) (t —AT)E((t —AT)E2(t)) .

(i3)

(i4)

(i5)

The assumption inherent in Eq. (15) is not essential and can be avoided by simply replacing R,p(AT) with

[R,p(AT)+R, p( —AT)]/2 in what follows.
The maximum and minimum coincidence rates from Eq. (13) satisfy

Rm, „~ —,
' rl&E)*(t)E2 (t)Ep(t)E)(t))+ —, rI&E( (t)E2 (t AT)Ep—(t AT)E)—(t))

+ 8 n&IEi (t)Ez (t)Ez(t —AT)Ei(t —AT) l),

Rm;„~ 8 rl&E(*(t)E2 (t)E2(t)E)(t))+ —, rt&E) (t)Ep (t AT)E2(—t AT)E)(—t))
—

8 g&lE)*(t)E2 (t)Ep(t AT)E)—(t —AT) l) . (i7)

The visibility is defined as usual by

R max Rmin
U

R max+ R min
(Is)

Using the inequality of Eq. (7) and expressing the right-
hand side in terms of R,p(AT) gives

R„(AT)
R„(0)+R„(AT) (i9)

Equation (19) limits the visibility that can occur in any
classical field theory and gives zero modulation for the
case in which the fields correspond to coincident pulses.

If the experiments are performed using detectors with
limited time responses and large coincidence windows, as
is often the case, then the above inequality can be gen-
eralized [15] to

OT+ COOPT
R = R p cosC 4 C +

2
(2i)

This diA'ers from the quantum-mechanical result by the
additional factor of 2 and corresponds to a visibility of
50%. Such models cannot simultaneously localize the
fields into coincident pulses whose widths are less than
AT, however. Any classical model that does would have
the visibility reduced accordingly as required by the in-

equalities of Eq. (19) or (20).
In quantum optics the intensity operator is given by

I(t) =E (t)E+(t), where E+ and E are the positive-
and negative-frequency components of the electric-field
operator [13]. As a result, the quantum-mechanical
equivalent of Eq. (7) would be

(t AT)E2+ (t AT)E i+ —(t))/2—

fgy tzR, o(r )dr+ 2 f~vt('R, o(.r )«
2fp"R,p(r )dr

(2o)

Here R,p is again the coincidence rate that would be ob-
tained using detectors with a negligible time response and
a negligibly small window.

Earlier experiments [12] have already shown that the
down-converted photons are coincident to within a time
interval much less than the value of AT in at least two

1&E] (t)Ez (t)E2+(t AT)E,+(t AT)—)l ~ &Ef (t)—E2

1 [5,7] of the two-photon interferometer experiments, in

which case the inequalities of Eq. (19) or (20) show that
there is no classical or semiclassical field theory con-
sistent with all of the available observations [16].

In the classical models suggested by Carmichael [10]
and by Chiao and Kwiat [11],the fields E ~

and E2 have
well-defined frequencies that sum to the pump-laser fre-
quency for a time interval larger than h, T or the time
resolution of the coincidence circuits. In that case the
coincidence rate of Eq. (13) simplifies to

+&E~ (t)E~ (t AT)E&+(t AT)E—2+(t))/2. —

It has already been noted [1] that in experiments of this kind the coincidence of the photons requires

E,'(t)E;(t ~ AT) =O,
while conservation of energy in the parametric down-conversion process requires that

E,+ (t AT)E,+ (t AT) -e'"""—'"'E+ (t)E—+ (t)

(22)

(23)
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where the sum of the two photon frequencies co~ and co2 is
equal to coo. [Equation (24) is only valid when d, T is
small compared to the pump-laser coherence time. ] In-
serting Eq. (23) into the right-hand side of Eq. (22) gives
zero, whereas inserting Eq. (24) into the left-hand side
gives (E~ (t)E2 (t)E2+(t)E~+(t)), which is the product
of the individual beam intensities and a nonzero quantity.
Thus the inequality is violated in quantum optics.

The quantum-mechanical situation is illustrated in Fig.
3. The field corresponds to an entangled state in which
there is a superposition of times at which the pair of pho-
tons may have been emitted, as indicated by the existence
of both the solid and dotted curves. Although the prod-
uct of E~+ and E2+ at two different times is zero, that
does not imply that the left-hand side of Eq. (22) must
vanish. Equations (23) and (24) would be logically in-

consistent if the fields were well-defined complex numbers
and the violation of this inequality provides a graphic
demonstration of the lack of objective realism of the elec-
tric field.

The author would like to acknowledge that this paper

Time

FIG. 3. Quantum-mechanical field corresponding to an en-

tangled pair of coincident photons, with a superposition of times
at which the pair may have been emitted.
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