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Calculation of the Transverse Nuclear Relaxation Rate for YBa2Cu307 in the Superconducting State
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(Received 8 July 1991)

The importance of the electronic spin fluctuations in the Cu02 planes in the theory of the transverse
nuclear relaxation for YBa2Cu307 has been demonstrated by Pennington and Slichter. We present the
predictions of an RPA-like theory for the transverse nuclear relaxation time, r, in the superconducting
state. s- and d-wave gap symmetries yield distinctively diA'erent results for i ', for an s-wave gap z
decays rapidly below T, , while for a d-wave gap it remains nearly constant. Measurements of i below
T, could provide valuable information about the symmetry of the superconducting state. Results for the
temperature dependence of i ' in the normal state are also given.

PACS numbers: 74.70.Vy, 74.30.Gn, 75. 10.Lp, 76.60.—k

Weak-coupling theories [1—4] of the spin fluctuations
in high-temperature superconductors have had consider-
able success explaining the normal-state results for the
longitudinal nuclear relaxation rate, T~ ', of the Cu(2)
and O(2, 3) nuclei in YBa2Cu307. Recently, Pennington
and Slichter [5] have shown that the indirect nuclear
spin-spin coupling mediated by these spin fluctuations,
and determined by the static magnetic susceptibility
g(q), gives a normal-state nuclear transverse relaxation
time r in reasonable agreement with experiment [6].
Here we extend this to the superconducting state using an
RPA form for the electronic spin susceptibility g(q) in
which the irreducible part of the susceptibility, go(q), is
replaced by the BCS expression. Within this framework
we examine the temperature dependence of ~ ' for su-
perconducting states with s- and d-wave gaps. For an s-
wave gap, g(q) is suppressed for both q —0 and

q —(tr, tr). However, for a d-wave gap g(q) is suppressed
for q —0, but not for q —(tr, tr) because of the nodes of
the gap on the Fermi surface. Since the dominant contri-
butions to the indirect nuclear spin-spin interaction arise
from the antiferromagnetic q —(tr, tr) contribution of
g(q), r ' decreases rapidly below T„ for an s-wave gap
and has little T dependence for a d-wave gap. Thus an
experimental determination of T;

' below T, could help

r
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This is just the usual BCS result for the susceptibility,
which contains the usual coherence factors, the dispersion
relation Ep=(sp+hp)'t, and the gap Ap. For the gap,
we will consider both an s-wave form, bp=Ap(T), and a
d-wave form, Ap=[ho(T)/2](cosp, —cosp~). For simpli-

city we will assume 2he(0) =3.52kT„and that do(T)
has a BCS type of temperature dependence. With go(q)
given by Eq. (3), the q 0 limit of Eq. (1) for g(q) has
the Landau Fermi-liquid form proposed by Leggett [91
for He. We have also used it to discuss the Knight shift
and Tl relaxation times in the superconducting state of
YBaqCu 307 [10].

Given g(q), the calculation of the effective coupling be-

distinguish the symmetry of the superconducting state.
We also present results for the T dependence of ~ ' in
the normal state.

To model the Cu(2) spin fluctuations, we will use an
RPA-like form for g(q):

g(q) = xo(q)
(1)

1
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Here U is a renormalized Coulomb interaction which is
associated with the on-site Cu(3d, 2 v2) Coulomb in-
teraction. In the normal state, we set

f(,+,) f(s,)—
zoq = 2

lV p sp
—up+ q

where sp = —2t [cos(p„)+cos(p,, )] —p, f(sp) = [exp(apl
T)+ 1] ', and p is the chemical potential. The chemical
potential, which sets the filling (n) =(n1+ni), and U are
chosen to adjust the strength of the antiferromagnetic
fluctuations [7]. While this is clearly a phenomenological
approach, it has proved useful in fitting the longitudinal
nuclear relaxation rate T~

' for Cu(2) and O(2, 3) nuclei
in YBa2Cu307 in the normal state. In addition, it pro-
vides a remarkably good fit to g(q, ito„, ) obtained from
Monte Carlo simulations of the Hubbard model [8].

In the superconducting state, we replace go(q), Eq.
(2), with

p+q p+ p+q p f p+q f( p)

p+qEP Ep+q+Ep

4

Hht=+A Io So +8 g Io'Ss, (4)

where 8; represents the electronic spins. Here 8 is an
anisotropic on-site hyperfine coupling and B is an isotro-
pic hyperfine coupling between the nuclear spin and the
electronic spins localized on the four neighboring Cu(2)

t tween two nuclear spins and the resulting transverse nu-
clear relaxation time r proceeds as discussed in Ref. [5].
The hyperfine coupling between a Cu(2) nuclear spin at
site 0, IO, and the electronic spins is given by the hyperfine
Hamiltonian [11]
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FIG. 1. The temperature dependence of the transverse nu-
clear relaxation rate for the Cu(2) nuclei with Hllc, r ', in the
normal state for U =2t (solid line} and for U =0 (dotted line).
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FIG. 2. The z component of the effective coupling, J-(x;}/6
(in units of sec '), between the nuclear spin at the origin (0,0}
and the one at site x; = (i „i,}. Here J- (x;} is shown for
T = l00 K (in square brackets) and T =300 K (in parentheses).

atoms. The nuclear spin Ip polarizes the surrounding
electronic spins and, for example, the z component of the
induced electronic spin at site xj. is given by [5]

4

S-(x, ) = ——,
' Io A F(x )+8-g F(x ), (5)

6=[

with

F(x, ) =—ge" "'g(q) . (6)j

The polarized spin S(x~) in turn interacts with the nu-

clear spin I; at site x;, with a hyperfine Hamiltonian simi-
lar to that given in Eq. (4). The resulting effective in-
teraction between Io and I; is Q, J,(x;)Io,I;, and the
a =z component of J,(x;) is given by

teracting (U=2t) and the noninteracting (U=O) sys-
tems in the normal state. While ~ ' for the U=O sys-
tem is nearly constant in the temperature regime of in-
terest, for the interacting system it is enhanced through
Eq. (1) and has considerable T dependence. Here we
have used an effective bandwidth W=8t of 1 eV and

/hy„= —48/hy„= —328 kG, where y„ is the gyro-
magnetic ratio of Cu. We find that r =115 psec [12]
at T=100 K, in good agreement with the experimental
value of 130+ 10 psec [5]. Figure 2 shows the effective
coupling J-(x;) between the nuclear spins Io and I; for a

1.5

s—wave
4

J-(x;) = 2--S-(x;)+8 g S.-(x;+$) Ip.- . (7) d —wave

Because of the form of the hyperfine coupling, the other

components, J,(x;) and JJ(x;), are much smaller than

J-(x;). Thus the largest deviation from the usual dipole-

dipole relaxation will occur for Hllc. Then, as discussed

in Ref. [5], the decay of the NMR spin-echo envelope for

the —,
' ——,

' transition of Cu(2) can be approximated
12/2r

by a Gaussian e ' ' with

069' 2( ) (g)

where 0.69 is the natural-abundance fraction of the Cu
isotope. We perform the sum over i in Eq. (8) for sites
up to ten lattice spacings away from the origin, where
J- (x;) becomes negligible.

In Fig. 1 the T dependence of r ' is shown for the in-
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FIG. 3. The temperature dependence of the transverse nu-

clear relaxation rate, r ', in the superconducting state for the
s-wave (solid line) and d-wave (dotted line) gap symmetries.

2899



VOLUME 67, NUMBER 20 PH YSICAL REVIEW LETTERS 11 NOVEMBER 1991

(3,3)

[0.329]
(0.921)

(2,2)

[0.422]
(0.949)

(3,2)

[O.374]
(0.943)

(1,1)

[0.559]
(0.969)

(2, 1)

[0.464]
(0.962)

(3,1)

[O.366]
(o.9s6)

(o

(o,o) (1.o)

[o.63s]
(0.974)

(2.0)

[0.509]
(0.976)

(3.o)

[0.375]
(0.963)

FIG. 4. The z component of the effective coupling, J-(x;)
(normalized to its value at T=T, ), for T=0.8T, using s-wave
(in square brackets) and d-wave (in parentheses) gap sym-
metries.
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FIG. S. The static RPA susceptibility g(q) vs q in the Bril-
louin zone (inset) in the normal state at T=T, (solid line) and
in the superconducting state at T =0.8T, for the s-wave
(dashed line) and the d-wave (dotted line) gap symmetries.

small cluster around site 0 at T=100 and 300 K. As T is
lowered J-(x;) is enhanced due to the development of an-
tiferromagnetic (AF) correlations.

Results for z ' in the superconducting state are shown
in Fig. 3 for a T,. of 0.10t. For an s-wave gap, r ' is

rapidly suppressed as the gap opens and then saturates.
In contrast, for a d-wave gap, r ' has little T depen-
dence. Figure 4 shows how J-(x;) changes as T is
lowered from T, to 0.8T, We s. ee that J.(x;) does not
change much for a d-wave gap. However, J.(x;) de-
creases rapidly for an s-wave gap, especially for ix;i)(,,=0.186 vF/A. For the gap amplitude that we are
using, the superconducting coherence length, („,is of or-
der several lattice spacings at T =0 for an s-wave gap.

From Eq. (6), it is clear that the strength and range of
the indirect nuclear spin coupling mediated by the spin
fluctuations is determined by g(q). In Fig. 5 we show

g(q) vs q for the normal state at T =T, and in the super-
conducting state for s- and d-wave gaps at T=0.8T, .
Over a region 0 (q ( (,, ', g(q) is suppressed for both
types of gap symmetries. As T/T, . goes to zero, we ex-
pect that g(0) will vanish, reflecting the formation of
singlet pairs. In addition, for an s-wave gap, g(q) is also
suppressed around (rr, x) due to the opening of the super-
conducting gap over the Fermi surface. However, for a
d-wave gap, g(q) is not suppressed around (rr, rr), since in

this case q —(x, rr) can connect two gapless regions of the
Fermi surface. In other words, it is the fact that a d-
wave gap has nodes on the Fermi surface that causes i
to remain nearly constant below T,

We have seen in a simple model how the T dependence
of the AF correlations in the Cu02 layers is reflected in

the T dependence of z ' for the Cu(2) nuclei when Hllc.
In the normal state the RPA result for ~ ' is enhanced

over the U =0 result and this enhancement increases with
the development of AF correlations. In the superconduct-
ing state we have calculated i ' for s- and d-wave gap
symmetries. For an s-wave gap r ' rapidly decreases
due to the suppression of AF fluctuations below T, In
contrast, for a d-wave gap, z ' is nearly T independent
below T„due to the nodes of a d-wave gap on the Fermi
surface. Hence we suggest that measurements of r
below T, could give useful information regarding the
symmetry of the superconducting wave function.

We would like to acknowledge many useful discussions
with D. Hone, T. Imai, C. Pennington, and C. Slichter.
Partial support for this work was provided by the Electri-
cal Power Research Institute. Numerical computations
were performed at the San Diego Supercomputer Center.

[I] N. Bulut, D. Hone, D. J. Scalapino, and N. E. Bickers,
Phys. Rev. B 41, 1797 (1990); Phys. Rev. Lett. 64, 2723
(1990).

[2] A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42,
167 (1990).

[3] T. Moriya, Y. Takahashi, and K. Ueda, J. Phys. Soc. Jpn.
(to be published).

[4] H. Kohno and K. Yamada, Kyoto University report (to
be published).

[5] C. H. Pennington and C. P. Slichter, Phys. Rev. Lett. 66,
381 (1991).

[6] C. H. Pennington, D. J Durand, C. P. Slichter, J. P. Rice,
E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 39,
274 (1989).

[7] In the following calculations we will set U =2r and

(n) =0.86, which have been previously used to fit the

2900



VOLUME 67, NUMBER 20 PHYSICAL REVIEW LETTERS 11 NOVEMBER 1991

NMR data for the longitudinal nuclear relaxation rate.
[8] RPA results for g(q, iso„, ) with U =2t provide an excellent

fit to the momentum, frequency, and temperature depen-
dence of the numerical results obtained with Monte Carlo
simulations with U=4t on an 8x8 lattice down to the
lowest Monte Carlo temperatures T=0.20t; see N. Bu-
lut, in Dynamics of Magnetic Fluctuations in High Tem
perature Superconductors, edited by G. Reiter, P.
Horsch, and G. Psaltakis (Plenum, New York, 1991); L.
Chen, C. Bourbonnais, T. Li, and A.-M. S. Trembly,
Phys. Rev. Lett. 66, 369 (1991); N. Bulut, D. 3. Scalapi-
no, and S. R. White (to be published).

[9] A. 3. Leggett, Rev. Mod. Phys. 47, 331 (1975).
[10] N. Bulut and D. 3. Scalapino, University of California at

Santa Barbara Report No. UCSBTH-91-05 (to be pub-

lished).
[I I] F. Mila and T. M. Rice, Physica (Amsterdam) 157C, 561

(1989).
[12] In order to fit the Ti ' data on YBa2Cu307 we had to use

an effective bandwidth of approximately l eV. This value

for the effective bandwidth is less than that obtained from

band-structure calculations and implies an effective mass

of order three for the quasiparticles.

2901


