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Effect of Random Pinning Sites on Behavior in Josephson-Junction Arrays
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We study the effects of dilute random pins on vortex ordering and flow within a bond-diluted
Josephson-junction array in a transverse magnetic field. We find evidence suggesting that the disorder
drives T, 0; nevertheless, the flux-flow resistivity in a dc current is reduced compared to a pure array.
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The effect of random pinning centers on vortex order-
ing and flux-Aow resistance in type-II superconductors is
an old problem [1] that has received considerable re-
newed interest in the context of high-T, superconductors
[2], where fluctuations are enhanced. In this Letter, we
consider this question in terms of a very simple idealized
system, the two-dimensional Josephson-junction array in

a transverse magnetic field [3]. We consider a uniform
periodic array and compare it with an array in which a
controlled amount of dilute randomness has been added.
The simplicity of our microscopic model enables us to ex-
plore in detail both thermodynamic and steady-state be-
havior in an applied dc current. Similar models have
been studied previously in the context of glassy behavior
in granular superconductors [4]. In our model we find
evidence suggesting that even a small amount of disorder
drives T, 0; there is no true phase-coherent supercon-
ducting state. Nevertheless, we find that for the range of
temperature and applied current studied, the flux-Aow

resistivity of the random case is less than the pure case,
due to the effects of the pinning centers introduced by the
randomness.

The Hamiltonian we consider is defined on a two-
dimensional square lattice, and given by

& = —g J;icos(0; —0~. —A;J),
(I'j)

where 0; is the phase of the superconducting wave func-

tion at site i, A;J=—(2e/hc) ftA dl is the integral of the
vector potential from site i to site j, and the sum is over
nearest-neighbor sites. We use a uniform transverse
magnetic induction B=VXA, for which the sum of 2;~
around any unit cell equals 2trf, where f=Ba /@o gives

the average density-of-field-induced vortices (a is the lat-
tice constant, @0 is the flux quantum). We consider two
cases: (i) the pure case, where all J;~. =Jn a constant, giv-

ing a uniform periodic array; (ii) the random, or bond-

diluted, case, where all J;j =Jo a constant, except for a
small fraction p of randomly selected bonds where we set

J;j =0. Each missing bond corresponds to a vortex pin-

ning site; the reduced vortex core energy, associated with

twisting the phases 0; by 2z around a unit cell containing
a missing bond, results in an effective attraction of the
vortices to these sites [5]. Henceforth, energies will be
cited in units of Jo, and lengths in units of a.
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FIG. 1. Specific heat C of the pure and 4% bond-diluted ar-
rays. Inset: A unit cell of the pure-case ground state. +
denotes the location of a vortex.

We first consider the equilibrium behavior of these two
cases, as explored by standard Metropolis Monte Carlo
simulations. Our results are for square I, &I lattices with
periodic boundary conditions, and a flux density f= —, .
The ground-state vortex configuration for the pure case is
shown as the inset in Fig. 1. 20000 passes have been
used to compute averages, with 5000 initial passes dis-
carded for equilibration. In Fig. 1 we present our results
for specific-heat density C, for L =20, as computed from
the usual energy fluctuation relation. The pure case
shows a clear peak, indicating a transition temperature
T,. =0.18. On comparison of heating versus cooling, we
find hysteresis in the energy density, indicating that the
transition in the pure case is first order [6]. In contrast,
C for the bond-diluted case appears perfectly smooth,
suggesting no finite T, Our calculation is for dilution
p=4%, and we have averaged over 32 different realiza-
tions of the random bond configuration.

As a better test for phase coherence (and hence super-
conductivity) consider a "twisted" boundary condition
0(x=L,y) —0(x =O,y) =h. For T & T, , the phase co-
herence across the system results in a total free energy
F(A) dependent on the twist, with a total supercurrent
flowing I, =(2e/6)(J, )&, where

( )
rJF (tJ.)
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boundary condition given by A. F(/3. ) has a periodicity of
2z, and for the pure case its minimum is at h, =O. For a
d-dimensional lattice of length L along the twist, and
width W in the transverse directions, the helicity mod-
ulus, or "twist stiffness, " is defined as [7]

Y = lim (J )gL/W 6 =Iim~ o(J )Jhh-+0

for d=2, L =W; For the random case, however, F(h)
has its minimum at some 4;„(&0, in general) which
varies randomly from sample to sample. For fixed Ao,
(J,)& may thus have different signs in different samples,
and will vanish when averaged over diiTerent random
bond configurations. Our previous definition of Y must
be modified. In this case, an eAective twist stiffness may
be defined by [8]

(3)

where the bar denotes the average over diferent random
bond configurations. As h, ;„varies randomly for dif-
ferent samples, our definition of Y should be independent
of the particular Ao at which it is evaluated [9]. In both
the pure and random cases, we should have Y, Y =0 for
T&T,

In Fig. 2(a) we plot Y(T) for the pure case, and Y(T)
for the p =4% bond-diluted case (averaged over 32 ran-
dom bond configurations), for several lattice lengths L.
In the pure case we see Y independent of L at low T, with
Y 0 at T,. =0.18, the same temperature as the peak in
C. In the random case, however, we see that for all tem-
peratures, Y decreases as L increases. In Fig. 2(b) we
plot lnY vs lnL at our lowest temperature T=0.01. We
see a clear decreasing trend suggesting Y 0 as L
and, hence, no true phase-coherent superconducting state
at finite T. This behavior is consistent with recent theo-
retical arguments concerning the 2D vortex glass [2(a),
2(b)], as well as results for the gauge glass model of a
strongly disordered 2D superconductor [10]. Unfor-
tunately, our sizes L are too small for us to extract ex-

ponents for the T, =0 critical point, as has been done in
this latter model.

We next consider the spatial correlation of the vorti-
ces by computing the vortex structure function S(q)
=(nqn q), where nv is the Fourier transform of the vor-
tex density. Using q along the (2, 1) direction (which
gives the periodicity of the pure-case ground state), we
estimate the spatial correlation length g from the half
width at half height, dq, of the peaks of S(q), g=tr/&q.
These are plotted versus T in Fig. 3(a). For the pure case
(we used L =30) we find ((T,+)=12 is finite, as expect-
ed for a first-order transition [below T„S(q) has sharp
Bragg peaks]. For the bond-diluted case (we used L =20,
p=5%%uo, averaged over 32 random bond configurations)
((T=O) =7.5 is finite, indicating that the ground-state
vortex lattice is disordered. Since there are two bonds per
site, a 5% bond dilution gives a 10% pin density with an
average separation between pins of a~ =410. We find
g(T =0)=7.5 & a~ & a, , =&5, the average separation be-
tween vortices at T=O. This is in agreement with the
theory of weak collective pinning by Larkin and Ovchini-
kov [1(a)]. In Fig. 3(b) we plot the average vortex densi-
ty n, , vs T. No difI'erence is seen between the pure and
bond-diluted cases. At low T, n, =f= &, the magnetic-
field-induced density. At higher T—1, n, , increases due
to the thermal excitation of additional (+1,—1) vortex
pairs.

Now we turn to the dynamic response of the two cases.
Using a resistively shunted junction model for the dynam-
ics, we integrate the classical stochastic Langevin equa-
tions of motion, as has been described elsewhere [11].
For a uniform current density i injected in one edge and
extracted from the other, with periodic boundary condi-
tions in the transverse direction, we compute the average
supercurrent density i, =I„/L [we use Eq. (2) with A =0],
which determines the voltage drop per unit length,
V=R„(i —i, ). R„ is the normal shunt resistance across
each junction, which we take as a constant parameter.
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FIG. 2. (a) Helicity modulus v of the pure and Y of the 4%
bond-diluted arrays, for various lattice sizes L. (b) lnv at
T=O.OI vs lnL. The decreasing Y with increasing L suggests
T, 0 for the random case.

FIG. 3. (a) Vortex spatial correlation length ((T) of the
pure and 5% bond-diluted arrays, as determined from the width
of peaks in the structure function. At high T, (=a,. is the aver-
age spacing between vortices. (b) Vortex density n, , for the
pure and random arrays. At low T, n, =f= —,
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FIG. 4. Voltage per unit length V vs applied current density i
at T=O for the pure and p =2.5%, 5%, and 10% bond-diluted
arrays. Critical current i,. increases with dilution p.

We integrate typically for 20-40 000 time steps of
At =0.05(2eR„ip/i'i), with an initial 5-10000 steps dis-
carded for equilibration. Henceforth, we measure cur-
rents in units of i p =(2e/6) Jp (the single junction criti-
cal current), voltage in units of R„ip, and resistivity in

units of R„. I n Fig. 4 we show the i - V characteristics
computed at T =0, on an L =10 lattice. The bond-
diluted curves are averaged over six realizations of the
random bonds, for p =2.5%, 5%, and 10% dilutions. We
see that the critical current i„at which a nonzero V first

appears, increases with increasing p. Our result for the
random case, that i, (T=O. )AO, while Y 0 as T 0,
reflects the irreversibility of the limits T 0 and twisting

up h, . Applying a twist h, and then cooling down temper-
ature T, the system will fall into the minimum-energy
configuration j0,. (A)I which carries zero supercurrent
(hence, Y=0). However, once in this energy minimum
at T=O, increasing the twist to h, +6 can give a finite su-

percurrent as there is a finite energy barrier between the
configurations [0, (A)J and je,. (A+6)]. i, is a measure of
these energy barriers [12].

It is interesting to compare the results above with those
of the related problem of tight-binding electrons in a
magnetic field [13]. Here the Hamiltonian is /it, y;
= —g~ J; ~e "y~ , where j are the ne.arest neighbors of i.
For the periodic array, one has a band structure of ex-
tended Bloch-like eigenstates. This electron band prob-
lem is related to our superconducting problem, by noting
that the electron wave function at the band minimum is

equal to the superconducting wave function into which
the system condenses at T„ in a linearized Landau-
Ginzburg (LG) approximation [14] to our Hamiltonian
(1). The electron states about this band minimum corre-
spond to the superconducting states of (1), which one
gets by applying finite twists h. This problem for a site-
diluted lattice has been studied by Soukoulis, Grest, and
Li [15]. They show that even a small dilution destroys
the commensurate ground-state structures at simple frac-
tions f, and that the states about the band minimum are
all Ioca1ized; or correspondingly, the superconducting
states in applied twists h, carry no supercurrent. Assum-
ing the ordered state retains its localized character as one
cools down below T, , we would have Y =0 in the ordered
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FIG. 5. Flux-flow resistivity R= V/i for the pure and 5%
bond-diluted arrays. The pure case shows a sharp drop at
T, =0.18 (finite R below T, is due to nonlinear resistivity). The
random case has smaller R due to the eAects of pinning.
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phase of this linearized LG model.
Finally, we consider the Aux-flow resistivity at finite T,

defined experimentally [16] as R=—V/i Our .results are
shown in Fig. 5. For the pure case on an L =20 lattice
with current density i =0.02=i, (T=0)/7, we see the
low-temperature plateau in R at T, =0.18, which is
characteristic of the first-order, vortex-lat tice melting
transition [6]. For comparison we show the resistivity R
for the random case with p =5%, for L =10 and i =0.05,
averaged over ten random bond configurations [17].
Despite our results suggesting that in the random case
T, 0, we see that the Aux-How resistivity is reduced
from that of the pure case. From Fig. 3(b) we see that
the density of vortices from thermally activated vortex
pairs is negligible over the temperature range shown for
R in Fig. 5. The increase of R with T is therefore due to
changing correlations among the field-induced vortices
with density f. Comparing Figs. 5 and 3(a) we see that
R for the two cases becomes approximately equal when
the spatial correlation length g-a, , at T—0.5. At this
temperature, vortices move independently of each other.
A single pin will trap only one vortex and, hence, a dilute
number of pins will have little net eA'ect. At lower T,
however, g increases, and the vortices move in correlated
clusters. Now a single pin can eAectively trap a cluster
with ( f vortices. The increased energy barrier for a vor-
tex to move away from a pin reduces the mobility of these
vortex clusters and decreases the Aux-Aow resistivity as
compared to the pure case.
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