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Observation of Non-Fermi-Liquid Behavior in Up 2Yp gPd3

B. Andraka and A. M. Tsvelik '"

Department of Physics. University ofFlorida, Gainesville, Florida 326l I
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We present data for the temperature and magnetic-field dependences of the specific heat, magnetic
susceptibility, magnetization, and electrical resistivity of Up. 2Yp. &pd3. The data demonstrate the scaling
behavior of the thermodynamic quantities at temperatures up to 10 K and magnetic fields up to 14 T.
The magnetic field scales as T' . The zero-field specific heat varies ~ith temperature as —TlnT. The
magnetic field strongly affects the thermodynamics, but the magnetoresistance is very small ( —2% at
T=0.36 K and H =14 T). We argue that our data are inconsistent with any single-impurity interpreta-
tion. We suggest that the system has a second-order phase transition at T=0.

PACS numbers: 75.20.Hr, 75.30.Mb

The cornerstone of the Fermi-liquid theory is the hy-
pothesis that the Hilbert space of low-lying eigenstates of
an interacting system is isomorphic with the Hilbert
space of the noninteracting electron gas. The immediate
consequence of this hypothesis is that low-temperature
properties of an interacting system resemble those of the
noninteracting Fermi gas: weakly temperature-dependent
positive magnetic susceptibility, a specific heat linear in

temperature, a well-defined quasiparticle peak in the
imaginary part of the one-electron Green function, etc.
Interactions reveal themselves in a renormalization of
various coefticients and also in small deviations from the
free-electron behavior: The quasiparticle peak at energy
e acquires a finite width y(e) (lim, o y/e =0), the electri-
cal resistivity has the following temperature dependence,
p=p(0)+aT + . , etc. It is legitimate to say that the
concept of the Fermi liquid implies that all multiparticle
correlations are short ranged in both space and time.
This condition is present in the derivation of the Fermi-
liquid relations as the suggestion that a two-particle ver-
tex I"" is a smooth function of frequencies and momenta
(see, for example, Refs. [1,2]). Long-range correlations
between particles are known to break the Fermi-liquid
behavior (the first realistic model was found in Ref. [3]).

Long-range correlations are present if a system has a
second-order phase transition; at the transition point the
correlations become infinitely long ranged. Therefore, if
a metallic system has a phase transition at T=0 then its
ground state is not isomorphic with the free-fermion-gas
ground state. At T=O the low-lying states are scale in-
variant; at a nonzero temperature the only scale is the
temperature itself. The experimental indications of the
second-order phase transitions are nonanalytic tempera-
ture and field dependences of physical quantities and, first
of all, their scaling. (We remind the reader that exactly
that happens in one-dimensional models of interacting
electrons like the Hubbard model which has an antiferro-
magnetic transition at T=O; it is well known that the
Fermi-liquid theory never works in one dimension. )

In this Letter we present the experimental data for the
specific heat, magnetic susceptibility, magnetization,
resistivity, and magnetoresistivity of the pseudobinary

uranium cubic compound Up2YpgPd3. These data clearly
demonstrate nonanalytic temperature and magnetic-field
dependences of the measured quantities and also show the
scaling. We argue that this indicates a second-order
phase transition taking place in this system at T =0.

The first zero-magnetic-field data, showing unusual
T lnT dependence of the specific heat, were obtained for
this compound by Seaman et al. [4].

Subsequently, we synthesized a compound of the same
nominal stoichiometry. According to the x-ray-dif-
fraction analysis, the investigated material is a single
phase with the AuCu3-type crystal structure and a lattice
constant of 4.074 A. The magnetic-susceptibility and
specific-heat data presented in this Letter are normalized
to U mole after subtracting the corresponding quantities
for YPd3, a nonmagnetic analog of Up 2Yp gPd3.

Our specific-heat data are presented in Figs. 1 and 2.
We show that there are two diff'erent regimes in the
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FIG. I. Specific heat divided by temperature (C/T) vs
loglpT in 0- and 14-T magnetic fields for Up. 2Yp[IPd3. The ab-
solute error of C (mainly instrumental error) is about the same
for all measurements (5%) and therefore does not significantly
aA'ect an analysis of the data.
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FIG. 2. The crossover function C(T, H =0)/T —C(T,H)/T

vs log~ o( H/T ') measured at 0.36, 0.9, and 1.8 K.

specific heat:

C (T,O)/T = —1.3A log ~ oT+ 8,
8=480 mJ/K (Umol), A =150 mJ/K (Umol),

and

C(T, H)/T =A logioH+D (H » T),
(2)
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given by the function f(x) represented in Fig. 2.
The ratio of slopes, [y(T,O)/log~oT]: [y(O, H)/log~oH],

is equal to 1.3 and coincides with the scaling dimension of
the magnetic field as it should for any crossover.

The magnetic susceptibility and magnetization were
measured with a SQUID magnetometer at temperatures
down to 1.8 K and in fields up to 5.5 T. At low tempera-
tures and in low fields [Fig. 3(a)] the susceptibility has a
power-law temperature dependence:

g=T ~, g =03~0 05.

The magnetization data, presented in Fig. 3(b), also re-
veal the scaling:

M/H = T "g(H/Ta), g =0.3, P =1.3. (4)

This scaling is less perfect than the scaling for the
specific-heat data. This in part, at least, can be attribut-
ed to the high sensitivity of magnetization to always una-
voidable small inclusions of secondary phases and mag-
netic impurities. Nevertheless, P determined from the
specific heat and g from the susceptibility data give the

FlG. 3. (a) logio(g) vs log~o(T) for temperatures 1.8 ~ T
~ 10 K and in H =0. l T. g is expressed in emu/(U mol) and T

in K. (b) The magnetization Af/HTo3 vs l go~ (oH/T'). ~/H
is expressed in emu/mol, H in Oe, and T in K.

best description of the magnetization in the form of Eq.
(4). A change of ri by 9.05 or p by 0.2 in either direction
results in a much larger spread of data points than in Fig.
3(b). Therefore, the magnetization results serve as an

important check point for the self-consistency of the pos-
tulated scaling.

In principle, a scaling is possible for single-impurity
systems, but we argue that the observed phenomenon is

not of a single-impurity nature. In fact, there is only one
single-impurity theory which predicts a low-temperature
scaling: the multichannel Kondo model formulated by
Nozieres and Blandin [51. Later, Cox provided argu-
ments that this model describes diluted uranium alloys
[6]. This model was used in Ref. [4] to explain the ob-
served T 1n T specific heat of the Up 2 Yp gpd3 compound.
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The fact that the magnetic field has a scaling dimen-
sion greater than 1 is the first indication that any single-
impurity interpretation is not valid in this case; single-
impurity fixed points have scaling dimensions smaller
than 1. For any single-impurity theory the scaling di-
mension P is related to the scaling dimension of the spin
operator, A, in the following way: P =1 —6 [7]. The form
of spin-spin correlation functions, (S(r)S(0))=I/~t~
restricts A to values greater than zero.

The data disagree with the single-impurity theory also
in the following important point. According to this
theory, an application of a magnetic field (or, in fact, of
any relevant field) should initially lead to a sharp increase
of the specific heat and only when the field is strong
enough (H)) T Tg, h, is its scaling dimension and T~
is the Kondo temperature) should the specific heat de-
crease. The physical reason for this scenario is that in the
absence of external relevant fields the ground state of the
multichannel Kondo model possesses some finite entropy.
The applied field destroys the non-Fermi-liquid fixed
point and turns the scaling trajectory towards the strong-
coupling fixed point where this residual degeneracy is ab-
sent. Naturally, to consume the entropy diff'erence be-
tween the two ground states the system should increase
its specific heat. The corresponding calculations for the
two-channel Kondo model where performed by Sa-
cramento and Schlottmann [8]. It is clear that such a
subtle feature as the residual ground-state degeneracy
can suffer from an interimpurity interaction. So, the ab-
sence of the discussed feature is a clear indication that
this interaction is important.

The electrical resistivity of Uo 2 Yo sPd3 (Fig. 4) is
larger by 2 orders of magnitude than that of pure YPd3,

The influence of the 14-T magnetic field is extremely
weak:

R(T=0.36 K, H=O) —R(T=0.36 K, H=14T)
R(T =0.36 K, H=0)

=0.02.
At the same time, the similar ratio for the specific heat

is about 3 . This again implies a departure from the
single-impurity situation: The magnetic field has a
different influence on the transport properties and the
thermodynamics.

If our data, as we suggest, do correspond to a phase
transition at T =0 we can use them to draw certain con-
clusions about correlation functions. The spin-spin corre-
lation function is the most suitable for this analysis. At
the point of the phase transition there is no scale and
therefore the correlation function has the following form:

((S+(r,r)S (0,0)»=(1/[r[ )g([t[/[r[') . (5)

At finite temperatures a scale appears as a correlation
length g(T). The expression (5) is valid only at

(6)

From (5) and (6) we conclude that the magnetic suscep-
tibility is proportional to

g 7. —
~ 7. — (3—~ 7. —I-I3- »ia

and that the scaling dimension of the magnetic field is

(7)

and the scattering cross section is close to the unitary lim-
it. The resistivity is approximately linear in T:

[R(0)—R(7 )]/R(0) —7 .

250 Using the experimentally found values for P, q we find
from (7) and (8),
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FIG. 4. Electrical resistivity of Up. 2Yp gPd3 measured in

H =0 and H =14 T fields and at temperatures from 0.36 to 20
K. The absolute error of p is ~25% due to unfavorable
geometry of the resistivity sample.

a =A= 2.25+ 0.1.
At finite temperatures, the spin excitations are over-
damped and, as it follows from Eq. (9), have the follow-
ing spectrum: rd i ~q~

+ —6=0.25 ~ 0.1. This spectrum
is close to the diff'usive one, which can be anticipated for
a disordered system.

Thus, we consider our data for Uo 2YO qPd3 as the first
observation of the system which, while remaining a metal
down to all accessible temperatures, exhibits a non-
Fermi-liquid behavior. We relate this behavior to a T =0
phase transition in this compound as evidenced by the ob-
served scaling of its thermodynamic properties. A phase
transition at some finite but small To with extremely wide
critical temperature region AT, AT))TO, is highly im-
probable.

The question why this transition happens only at T=0
remains unresolved. Full accounting for it requires more
information on the nature of the order parameter.
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