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It is shown that the invariance of linear-response formulations under large gauge transformations re-
quires the use of a generalized continuity equation in which current sources at infinity are included.
These sources, which are described by delta functions located at the points of infinity, guarantee global
charge conservation in models with open boundary conditions. Descriptions of steady-state transport in
terms of global conductance coefficients and nonlocal conductivity tensors are shown to be equivalent.
The reciprocity theorem for a four-lead resistance is proved in its full generality for interacting electron

systems.
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The approximation of linear response has been exten-
sively used in the theory of electron transport. After the
classic work of Kubo [1], microscopic calculations of con-
ductivity have been routinely performed by theorists and
the knowledge gained from them has been instrumental
in the development of solid-state physics. In Kubo’s ap-
proach to linear transport, the current density at one
point is a linear and, in general, nonlocal function of the
external electric field. In the steady-state regime,

Jk(r)=fak,(r,r')E/(r’)dr', €))

where oy, (r,r') is the conductivity tensor. Simultaneous
with Kubo’s work, an alternative approach to electron
linear transport was developed by Landauer [2] in which
the resistance is related to the electron scattering. Lan-
dauer’s work only gained popularity many years later
with the advent of the scaling theory of localization [3]
and, more recently, with the development of the physics
of mesoscopic systems [4]. His work was later refined
and generalized by other authors (for two historical ac-
counts, see Refs. [5] and [6]). Linear transport in a mul-
tilead structure is characterized by the conductance
coefficients g, relating the total current I, in a given
lead m to the voltages ¢, in the asymptotic regions of the
various leads attached to the sample,

I",Efdsm-]m(sm)=Zg""l¢" > (2)
n

where J,, is the component of the current density parallel
to the direction of the lead. Biittiker [7] showed that, in
the independent electron approximation and at zero tem-
perature
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where T, i; is the electron transmission probability from
channel j of lead n to channel i of lead m.

The relation of the conductance to the electron scatter-
ing, as described by the Landauer-Biittiker equations (2)
and (3), is usually considered the characteristic feature of
the Landauer approach to linear transport. However, in
this work we will be more concerned with the fact, ex-
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pressed by Eq. (2), that the current is uniquely deter-
mined by the asymptotic voltages. This property is in ap-
parent contrast with the Kubo formula (1), which gives
the current as a nonlocal function of the external electric
field. Thus one of the goals of this paper is to establish
the validity and equivalence of both formulations. All the
arguments given in this paper apply to systems of elec-
trons with arbitrary interactions. The expression (3) for
the conductance coefficients g,,, will apply to the particu-
lar case of noninteracting electrons and zero temperature.
Finally, symmetry relations of the Onsager type will be
derived. We omit in this presentation the discussion of
questions related to Van Kampen’s objection to linear
response and to the exchangeability of the concepts of
electrostatic potential and chemical potential. A more
detailed version of this work will be given elsewhere [8].

The question of the equivalence between the Kubo and
Landauer formulations of electron linear transport has
already been considered by several authors within the
framework of the independent electron approximation
[S-11]. However, these valuable works are of limited
generality [9,10] (assumption of a constant electric field)
or contain inconsistencies in the treatment of bulk and
boundary terms [5,8,11]. We will see that the study of
this problem requires an adequate treatment of the deli-
cate interplay between surface and bulk contributions in
systems with open boundary conditions. This question is
related to the more fundamental problem of the invari-
ance of electromagnetic linear response under /arge
gauge transformations, defined as those in which the
function of the gauge transformation A(r) does not van-
ish at infinity [12]. The invariance under small gauge
transformations [i.e., those in which lim, . A(r) =0]
was already proved by Kadanoff and Martin [13]. The
extension of the proof to the case of large gauge transfor-
mations requires a generalization of the continuity equa-
tion that explicitly includes current sources at infinity
[see Eq. (12)]. This generalization is not an ad hoc solu-
tion to the problem, but a rigorous consequence of the
operator properties in systems with open boundary condi-
tions.

To state the problem, we begin by considering a physi-
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cal system with arbitrary many-body interactions that is subject to a time-dependent perturbation

v = p0e,ar, @)

where p(r) is the electron density operator. In first-order perturbation theory the expectation value of the induced
current is

nan=—= [ _ar farticeo.p@ Doy ==p [ _ar [ ariaopaene ) 5)

(B=1/kT), where ji (r,1) is the electron current operator in the interaction picture and the canonical correlation

@by =p~" [ (a(=inr)b @) ©)

has been introduced [14]. By invoking the continuity equation, p(r',z') in Eq. (5) can be replaced by —V;;,(r',+') and,
after integration by parts, one obtains

s =p f_ar farGie0u @ nt=view N+ [ _ar [ st 0,060 | )

where the second term contains an integration over the [
surface of infinity, i.e., a surface that is far enough from port. Thus it deserves a very serious scrutiny before it
the sample for the physical fields to vanish [15], and can be definitely accepted. A natural check of this equa-
Jn(s',t") is the component of the current normal to that tion consists in trying to rederive it in a different gauge.
surface. For a mesoscopic structure in which leads are If, for example, one takes a pure vector potential A(r,z),
attached to the sample, the surface of infinity is formed as is most often done in derivations of the Kubo formula
by a finite number of disconnected pieces and the second of conductivity, to describe the electric field, E(r,z)

term of Eq. (7) becomes = —(1/c)A(r,1), one obtains the rather surprising result
. that the predicted current is different from (7). Thus, the
ﬁf_mdt'Zm (t')fds,',(j;.- (r,1):ju(s,1')), (8) somewhat remarkable consequences of Eq. (7) are au-

tomatically held in suspense and we find ourselves in
where ¢,(¢) is the asymptotic voltage at lead n. These front of a more general and fundamental problem, name-
surface terms were essentially neglected in Kubo’s origi- ly, the gauge invariance of electromagnetic linear re-
nal work [1]. sponse. It is easy to see that the change from a purely
The remarkable fact about Eq. (7) is that, while its scalar potential to a purely vector potential requires a
derivation was motivated by an attempt to prove the large gauge transformation if the electric field is zero
equivalence between a bulk and a boundary formulation everywhere at ¢= —oco (the steady-state regime is
of linear electron transport, it seems to contain both types achieved by introducing the perturbation adiabatically),
of contribution. While the first term of Eq. (7) can be yields a net potential drop, and is zero at all times in the
easily identified with the Kubo formula, the second term asymptotic leads.
seems to yield a Landauer-type contribution (actually, To study the question of invariance under a large
with an opposite sign) which depends on the voltages in gauge transformation, let us describe the electric field
the leads. If Eq. (7) were correct, it would imply a major ~ E(r,z) with an arbitrary gauge [16], E(r,t) = —V¢(r,7)
revision of the commonly held views about linear trans- —(1/c)A(r,1). In this gauge, the expectation value of
| the current is written as

no=— [ ar [ arWie0,06 Dot

—L A" dr f ar U 0, DA ) — <) Ak (r,0) ©)
ihe J = o ’ mc o

If a gauge transformation is performed, ¢— ¢ —A/c, A— A+VA, one should expect the variation of the current
AJ (r,1) to be zero on physical grounds. However, one finds after some algebra,

AJk(r,z)=7,;f_wdzfm([,k(r,t),{v,,,(r,z)+J’(;t—,’)} A
—17117f_mdt’fds’([jk(r,t),j,,(s',t')])A(s’,t’), (10)
where the operator identity
Lk (£),p()) =(hc/mi)p(t)V6(r — ') )
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has been used. In principle, the first term in Eq. (10)
vanishes due to charge conservation. In the case of a
small gauge transformation, this would complete the
proof of gauge invariance, since then A(s',z') =0 [13].
The case where A(s,t) takes a uniform value at the sur-
face of infinity can also be dealt with trivially by invoking
charge conservation and Eq. (11). However, in the gen-
eral case of a large gauge transformation in which A(s,¢)
is not uniform, there is no clear way of removing the
second term of Eq. (10) and thus of proving gauge invari-
ance. Since the predictions of the theory have to be
gauge invariant, there must be a flaw either in the deriva-
tion of Eq. (10) or in its interpretation. The algebra
leading to this equation is quite direct; thus we investigate
below the second possibility and show that a satisfactory
solution to the problem can be found.

First we note that gauge invariance would be proven by
Eq. (10) if we were able to replace the standard continui-
ty equation by a modified version of it:

V-j(r,t)+—a£%rt’—t)—=j,,(s)5(r,,—s,.), (12)

where r, (s,) is the component of r (s) along the direc-
tion locally normal to the surface of infinity, defined here
by the set of points s. Essentially, this is a delta function
located at the surface of infinity and, as a distribution, it
can be defined in more intrinsic terms than suggested by
the specific representation given in Eq. (12) [8]. This dis-
tribution assigns to a given function its asymptotic value
at the various points of infinity. Physically, the right-
hand side (rhs) of Eq. (12) represents a current source at
infinity. It is natural to ask whether one can derive this
generalized continuity equation (GCE) (12) from
rigorous mathematical considerations. The surprising
answer is yes. One can compute the time derivative of
the density operator from the relation

p=Q0/in)p,Hol, 13)
where

2
1 + . _e
Ho= 5 fdrv/ (r)[ ihV - Ao(r)

y(r) (14)

is the noninteracting part of the unperturbed Hamiltoni-
an (the interacting part trivially commutes with p), which
includes the possibility of a background magnetic field
B=VxA, As is well known, application of the equal-
time commutation rules leads to the standard continuity
equation. However, if, in the integration by parts, one
keeps surface terms that are usually neglected, what one
obtains is exactly (12). Thus, the GCE is a direct conse-
quence of the operator properties. It is important to note,
however, that a modification in the usual definition of the
derivative of the delta function has to be introduced when
this is acting on functions that do not decay at infinity,
but tend to a finite constant. Surface terms in the form
of a delta function located at the points of infinity have to
be included if mathematical inconsistencies are to be
avoided, and the gauge invariance studied here is just one
particular example [8]. This type of surface term is usu-
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ally removed by assuming that the test functions have a
compact support or decay at infinity. However, many
functions or operators in physics, like the current distri-
butions considered here, do not satisfy any of these condi-
tions.

The validity of Eq. (12) can also be supported from
physical considerations. The crucial feature is that in
models with open boundary conditions, local conserva-
tion of charge does not guarantee global conservation of
charge. This idea can be illustrated with a simple exam-
ple. Consider an infinite electron gas in which an attrac-
tive impurity is added. Beyond a sufficiently large dis-
tance from the impurity, nothing has changed, due to to-
tal screening. However, in the region close to the impuri-
ty, an extra electron has been added. Thus, by introduc-
ing the impurity, the system has passed from having
“infinite” electrons to having “infinite-plus-one” elec-
trons. However, charge cannot be created if no term in
the Hamiltonian allows for such a process. The source
term in the GCE precisely guarantees global charge con-
servation. It tells us that whatever charge is added to the
system, it is explicitly taken from the points of infinity. If
one integrates the GCE over a compactified space that in-
cludes the surface of infinity, the first term in the left-
hand side of (12) cancels with the source term and, as a
result, global charge conservation is preserved.

Before we proceed further, let us discuss in what situa-
tions the source term of the GCE is not needed. The rhs
of Eq. (12) is irrelevant when, as is usually done in field-
theoretical contexts, matter and gauge fields are assumed
to vanish far at infinity (this case would also include
closed systems), or when periodic boundary conditions
are adopted, as has traditionally been done in solid-state
physics, since then the same physical current j, appears
on both sides of the boundary, but with opposite sign, and
the two contributions cancel. The GCE is also not need-
ed when the external electric field involves no net poten-
tial drop. However, mesoscopic multilead structures con-
stitute a clear example of physical systems in which none
of the boundary conditions mentioned above can be ap-
plied. Periodic boundary conditions are not desirable
since they would introduce unwanted multiple scattering.
On the other hand, current distributions at infinity cannot
be assumed to vanish in the presence of a potential bias,
and, furthermore, these are precisely the quantities we
want to compute. Finally, we note that the GCE is an
identity in the sense of distributions. Thus, the source
term can be omitted when one is only interested in rela-
tions between local physical quantities.

It might be argued that, after all, infinite open systems
are fictitious entities and that all physical systems are ul-
timately finite and thus the GCE is unnecessary. Howev-
er, physical models with open boundary conditions are
convenient idealizations which are most often adopted in
condensed-matter physics (and, more generally, in sta-
tionary scattering studies). The GCE is simply a require-
ment of mathematical consistency that is essential in
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some types of calculation. For example, let us introduce
the GCE in Eq. (5). The source term of the GCE cancels
with the surface term of Eq. (7) and the expression for
the current becomes

wan=p [ _ar farGio5 e rVEEY), (5

which is a manifestly gauge-invariant result. Thus the
Kubo formula is correct even when the boundary terms
are carefully taken into account.

The question remains of whether Eq. (15) can adopt
the form (2) in the steady-state regime with an expres-
sion for g, that would eventually lead to Eq. (3) in the
case of independent electrons. There is a powerful argu-
ment to prove the formal equivalence between Egs. (2)
and (15). If they were not equivalent, then the total
current in one lead would not be a unique function of the
voltages in the leads but would depend on the details of
the electric field, as seems to be suggested by Eq. (15).
Then it would be possible to find two different external
electric fields yielding the same asymptotic voltages that,
however, would give rise to different currents in the leads.
But in linear response it would be possible to obtain a
third solution by subtracting the previous two. Such a
solution would involve a nonzero static electric field with
zero voltage in all leads yielding, however, a nonzero
current in the leads, something which is clearly unaccept-
able on physical and mathematical grounds [8]. Thus, in
the static limit, Eq. (15) has to reduce to an equation like
(2). Note that this argument applies to the current den-
sity at any point of space if B=0, but only to the total
current in the asymptotic leads if B=0 [8]. To find a
specific expression for g,,, we can exploit the indepen-
dence of I, on the details of the potential profile and
choose a ¢(r) made of step functions in the leads of
height ¢, — @9, where ¢¢ is a reference potential that
drops from the calculation due to charge balance. The
electric field is then a sum of delta functions and the spa-
tial integral in (15) can be trivially performed. The re-
sult is

Ps— Py )pall) g
=ih ,
Einam EJ 8ﬂ—€ﬂ Eﬁ_8a+i0+

(16)

where the matrix elements [i,,]gﬂ of the total current
operators are taken between many-body states |a) with
energy &, whose probability distribution P, is that of a
grand canonical ensemble for the incoming channels of
the many-body scattering states [8]. The independent
electron limit is formally equivalent to (16) with |a) rep-
resenting a one-electron state and P, the Fermi-Dirac dis-
tribution. Such an expression has been shown in Ref.
[11] to be equivalent to Eq. (3).
From (16) it is easy to derive the Onsager relations

gmn(B) =gum(—B), 17

by expressing g.»(—B) as a sum over the time-reversed
versions of the states appearing in (16), and this result

can be shown to lead to the reciprocity theorem [8] (see
Appendix B of Ref. [5]),

ﬁnm,kl(B)=7{kl,»m(_B) s 18)

where R =(ox —¢1)/1, is the four-lead resistance
(I, =—1,). Biittiker [7] has derived Eqgs. (17) and (18)
from the symmetry properties of the scattering probabili-
ties contained in Eq. (2), which applies to noninteracting
electrons and zero temperature. Here, the symmetry re-
lations (17) and (18) have been proved for finite temper-
ature systems with arbitrary interactions.
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