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Comment on “Electronic Structure of Ideal
Metal/GaAs Contacts”

In an interesting paper [1], van Schilfgaarde and New-
man have analyzed theoretically the electronic structure
of ideal metal/GaAs contacts by means of a self-
consistent local-density approximation (LDA), and have
concluded that “models which invoke intrinsic interface
states to explain Fermi-level pinning are not consistent
with experimental observations. This strongly suggests
the nonideal nature of the experimentally observed inter-
faces.”

Contrary to these remarks, I intend to show that ideal
interfaces and the induced-density-of-interface-states
(IDIS) model (or the intrinsic-interface-states model in
Ref. [1]) can explain the observed behavior of metal-
semiconductor interfaces.

The conclusions of Ref. [1] are based on the theoretical
results obtained for the barrier heights of different
metal/GaAs interfaces that show a lack of correlation
with the experimental evidence and, apparently, with the
charge-neutrality level of the IDIS model [2]. Leaving
apart the problems associated with the error introduced
[3] in the LDA, which makes the conclusions of Ref. [1]
at least questionable, I would like to concentrate on the
actual characteristics of the IDIS model. First of all, I
should mention that it has already been known for some
years that the IDIS model would yield different interface
change-neutrality levels depending on the interface condi-
tions [4,5]. Accordingly, intrinsic and extrinsic charge-
neutrality levels have been introduced [6]. The intrinsic
level (or the midgap energy [2]) only appears in very
idealized conditions: (i) where the metal has a broad and
featureless electronic density of states [7]; and (ii) for
(110) III-V semiconductor surfaces, when the adsorbed
metal atom is very large, and its valence electrons in-
teract similarly with the cationlike and the anionlike sur-
face states [7,8].

Even Al on Si(111) can give [4] different charge-
neutrality levels depending on the position of the last Al
layer on the Si surface. Theoretical results yield values of
¢pp ranging between 0.4 and 0.9 eV, depending on the
surface geometry. These values fluctuate around 0.67 eV,
the level that one can define as the Si intrinsic charge-
neutrality level [6].

K on GaAs(110) is a very ideal case [8] due to the K
large size. The charge-neutrality level and the Fermi en-
ergy are almost independent of the metal adsorption site,
yielding a Schottky barrier ¢z, of ~0.7 eV.

For a thick Ag-GaAs(110) interface it has been found
[5] that the Schottky barrier ¢, varies between 0.54 and
0.93 eV, depending on the metal adsorption sites on the
semiconductor. The intrinsic charge-neutrality level was
also found [5] to be around 0.7 eV.

The important point that one can deduce from these re-
sults [2-4] is that the extrinsic charge-neutrality level
fuctuates around the intrinsic one, depending on the

metal-atom properties (as shown very elegantly in Ref.
[1]) and its adsorption site at the semiconductor inter-
face.

The results of Ref. [1] seem to confirm this conclusion,
since the calculated values of ¢z, fluctuate around 0.7 eV,
the GaAs intrinsic charge-neutrality level [6]. On the
other hand, those results have been calculated for a fixed
interface geometry: One can expect, however, for the
metal adatoms different adsorption sites from the ones as-
sumed in Ref. [1], changing accordingly the interface
Fermi level.

In conclusion, the actual theoretical evidence [4-6]
does not support the claim of Ref. [1] mentioned at the
beginning of this Comment and suggests that more
theoretical calculations minimizing the total interface en-
ergy are necessary before a definitive conclusion about
the properties of ideal metal/GaAs contacts can be
reached. Let us remark, however, that LCAO calcula-
tions along these lines have been performed for the
alkali-metal-GaAs(110) interfaces [8,9]; the results of
these calculations support unambiguously the IDIS mod-
el. Moreover, LDA calculations [3] for the NiSi,-Si
junction for which the interface geometry is well estab-
lished also support the same model. All these results sug-
gest the ideal nature of at least some of the experimental-
ly observed interfaces.
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