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Domain Boundary Energies and Interactions at 2D Criticality via Conformal Field Theory
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By use of conformal field theory, we calculate the energies of one or more curved domain boundaries
at two-dimensional critical points. We find the interaction of two separated boundaries of the same type
to be weakly attractive, and proportional to the square of an operator-product expansion coefficient. In a
strip of width L, the interaction vanishes exponentially with separation, over a distance set by L. It is
also small for nearby domains when one of them is much smaller than L. Many-body interaction ener-
gies are weak as well ~
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The principle of conformal invariance has led to an
abundance of interesting and beautiful results for systems
at criticality, especially in two dimensions. By applica-
tion of fundamental developments in conformal field
theory [1,2] new results for many theoretical (for recent
reviews see [3-5]) and experimental systems [6-8] have
been obtained. In this Letter we employ the basic princi-
ples of the theory to compute the energies and interac-
tions of curved domain boundaries in two-dimensional
systems at criticality. Our results are to our knowledge
new, extending previous work on finite-size effects on in-
terfacial properties [9], especially the energy (interfacial
tension) of a single long straight boundary [10] and the
role of domain boundaries in the critical region of the Is-
ing model on a torus [11].

Consider an excitation or other perturbation created by
a set of scaling operators A =y, (r~)pt, (r2) . , in a crit-
ical system with fixed-point Hamiltonian 8. The parti-
tion function in the perturbed ensemble is then simply
Z'= TrA e, and the change in (free) energy (in units
of kttT) just

hF = —ln(p, (r~ )pb(rq) ) .

The basic statement of conformal invariance is that any
correlation function of scaling operators transforms ac-
cording to [12]

(P(zi, zi) ' )=W (Zi) W (Zi) ' ' ' (P(w[, wi) ' ' ' ),

r2, x =6+6, and xq =hi, +hi, is the scaling dimension of
The OPE coe%cients Cp are pure numbers and

universal. By convention, the scaling operators are nor-
malized so the leading (k =0) term on the right-hand
side of Eq. (3) is r . Equation (3) may be used in

correlation functions when r is much less than the dis-
tance from r[ or r2 to any other operator.

In the context of critical fluctuations, the OPE may be
understood as follows [6]. In general, there will be some
set 4o;(r;) j of most relevant scaling operators. Therefore,
any product of two of these, in an expectation value with
any p~(r~. ), will have one or more terms that decay most
slowly as r~ ~. But these must just be. the expecta-
tions of the right-hand side of Eq. (3) times pt(r~. ). (The
r dependence on the right-hand side follows from scale in-
variance. )

For the purposes of this paper, we first consider a sys-
tern in the upper half plane with a given conformally in-
variant [14,151 boundary condition. A simple example is
a model in the Ising class with all spins held up on the
real axis. The boundary condition may be changed by
the introduction of an appropriate boundary operator
[14,15] lit(x) on the real axis. In our Ising example,
placing boundary operators at x~ and x2 will create a
domain of (predominantly) down spins, as illustrated in

Fig. l. The domain boundary, defined by the locus along
which the average of the order parameter is zero, is a half
circle of radius r =x~2j2 (in what follows, xj=—~x; —

x~~

and, similarly, u;~=~u; —u~. (). This may be understood
as follows. With one operator at the origin and the other

where w =w(z) is any analytic function,
~
w'(z)

~
is the lo-

cal scale factor introduced by the transformation, and
A, h the scaling dimensions of p. Equation (2) is a local
generalization of global scale invariance at a critical
point.

The other tool we make use of is the operator-product
expansion (OPE) [13]. For identical (bulk) operators
this may be written as X X

2

p(r~)p(r2) =Q Ckr
'

'~t,. (R), (3)

where r = )r~ —r2~, R is a vector in the vicinity of r~ and

FIG. 1. Domain boundary in the upper half plane. For the
Ising example mentioned in the text, 8 and B refer to "up" and
"down" domains.
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at ~, the boundary runs along the imaginary axis. One
can place the end points anywhere on the real axis via a
projective transformation, which takes straight lines into
circles. The new boundary must intersect the axis at 90,
since conformal transformations preserve angles. Note
that this latter conclusion is consistent with the two
phases being equivalent at criticality. The correlation
function in this circumstance is [16]

(y(x 1 )y(x p ) ) =x|2",
where h, is the boundary scaling dimension of y, so that

for our Ising-class example. (The notation x is

used in Refs. [17,18].) The energy of this domain bound-

ary follows immediately from Eq. (1).
Domain boundaries created in this fashion are often re-

ferred to as "pinned" or "anchored, " since their ends are
fixed. Realizations are possible by appropriately chang-
ing the microscopic degrees of freedom at the edge of the
strip. Examples include switching the spin configurations
in the Ising example mentioned or, in a stepped-surface
system with a phase transition involving surface recon-
struction, introducing a kink in the terrace edge.

The transformation w =u+i v =L/zr ln (z ) maps the

upper half plane into an infinite strip of width L, with

edges. We refer to the resulting domain boundary in the
strip as a "bubble, " if I] and x2 are on the same side of
the origin, or a "wall" if not, as shown in Fig. 2. The as-
sociated energies, from Eqs. (1) and (2), are

For domain width u~2 0 or L ~, Eq. (5a) repro-
duces the upper half plane result, as it should. For
u lz ~ the boundary is straight and Eq. (5a) or (5b)
gives a domain boundary energy zrh/L per unit length, in

agreement with previous results [17] obtained by analysis
of the effects of boundary conditions on the transfer ma-
trix. The expression for E has been verified for the Ising
model by direct calculation [19]. Terms proportional to
lnL also appear in finite-size corrections to the free ener-

gy [9], and may be understood via a "dimensional reso-
nance" argument [20].

Next we consider the effects of introducing several
domains. In what follows, we study the effects of various
combinations of domain boundaries by placing boundary
operators y at points x] &xq & x3 & x4 on the real axis.
The total energy then depends on a four-point correlation
function. If at least one pair of points is near each other,
the situation simplifies. Suppose first that x|2&& x ] 3.
Then, by use of the OPE for boundary operators [15,21],
the four-point correlation function may be reduced to a
sum of three-point functions. These have the same x
dependence as the z dependence for bulk operators
[12,22], since the boundary implies that there is only a
single Virasoro algebra [18]. The leading term is

(y(x 1) . y(x4))

(x i px 34) [ I +C '(x
) zx 34/xa 3xa4) + ' ' ' ]

EI, =2AIn [2L/zsinh(zru|2/2L)],

E„,= 2A ln [2L/zr cosh(xu 1 q/2L ) ] .

(5a)

(sb)
where h,

~ is the dimension of the most relevant boundary
operator y] appearing in the expansion of y with itself
and C is the appropriate boundary OPE coefticient. For
later convenience, we choose x, =(xixz)' . Applying
Eq. (1) then gives a total energy which, in this limit, is

close to the energy of two isolated boundaries [23]. Sub-
tracting their energy from the total implied by Eq. (6)
then gives

Ep C (x / QX34/xg3xg4) (7)

U
1

"bubb le"

U
2

L

"wal 1"

FIG. 2. "Bubble" and "wall" domains in the strip geometry.
The boundaries are defined by mapping the boundary in Fig. l

with w =L/sin(z). The "bubble" never crosses the midpoint of
the strip, and is not elliptical.

for the pair interaction energy in the upper half plane.
Thus, in the half plane, the pair interaction energy decays
algebraically with the distance between domains and its
magnitude depends on the ratio of domain size to domain
separation. We may th'en regard these weakly interacting
domains as distinct entities.

We now derive results for F.2 in the strip geometry by
use of the logarithmic transformation mentioned and Eq.
(2). Note that the scale factors give an additive contribu-
tion to the total energy that drops out of Eq (and all other
interaction energies as well). First consider the case
0 & x]. Here the two boundaries in the half plane map
into two bubbles on the same side of the strip. One finds

sin h (zru 12/2L )sin h (xu 34/2L )F2= —C 8
sinh (zru 3,/2L )sin h (xu 4,/2L )
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where the domain location u, —= (u i+u2)/2. Note that F2
is always attractive, and proportional to the square of a
(boundary) OPE coeflicient. For domains of fixed size, it
again vanishes with domain separation u,b—= ~u4+u3
—u~~/2, but exponentially as e "'" ' . Its magnitude
again depends on the relation of domain size to separa-
tion, but in a more complicated way than in the half
plane. It is interesting that the sin h factors in the
numerator of Eq. (8) may be reexpressed in terms of the
bubble energies by use of Eq. (5a), so that the magnitude
of the interaction depends exponentially on the energy of
the single-domain boundaries.

For the Ising example mentioned above, the OPE in-

volves only the unit operator I. In such cases, the interac-
tion is given by a higher-order term in the conformal
tower of l. As a result, in Eqs. (6)-(8), A~ =2 and C is

replaced by 2A /c, where c is the central charge.
We next consider some implications of the symmetries

of the interaction energy. The scale invariance of E2 in
the half plane simply corresponds to translation invari-
ance along the strip [24]. However, the half plane ex-
pression is also translation invariant, which leads to some
interesting consequences in the strip. Translating the x;
along the real axis, the value of E2 remains fixed, but the
form of Eq. (8) changes and the type, width, and location
of the boundaries in the strip is altered. For instance,
given x]2&(x34 one goes from a narrow bubble to the left
of a wide one (u ~2 && u 34) to the opposite case as the ori-
gin approaches x ~

and u ~
~. Now with x;x~ & 0, the

corresponding factor in Eq. (8) is as written. However,
for x;x~ & 0, the corresponding sinh is replaced by a cosh.
Thus for x~ &0 & x2 the factor sinh(xui2/2L) in Eq. (8)
is replaced by cosh(nuit/2L) [25]. The altered formula
describes a bubble-wall interaction, with the wall bending
away from or toward the bubble, for ~x~ ~

& xq or ~xi ~

& x2, respectively. For x2 &0 & x3 one has two bubbles
on opposite sides of the strip with E2 as given in Eq. (8),
except that the sinh factors in the denominator are re-
placed by cosh. Note that this case includes the situation
where u =up. For x3 & 0 & xq one again has a bubble-
wall arrangement.

Some new situations arise if we let x2 approach x3.
The form of F2 follows from Eq. (8) on the permutation
of indices and redefinition of u, . Proceeding as above,
the translation invariance gives rise to bubble-bubble,
bubble-wall, and also wall-wall interactions. The former
case includes two bubbles inside each other (on the same
side of the strip, with one small compared to L). The
mixed situation includes u, =ub —here the bubble is

small, so the wall avoids it. The latter case includes all
four possible orientations of two walls, on changing the
location of the origin and allowing [xi~ & x4 or ~xi~ & x4.
(Recall that a small interaction of domain walls in the
perpendicular direction on a long torus was assumed in

Ref. [11].) In all the above, the interaction energy is

small either because the width of at least one domain

boundary is small compared to the domain separation or
because the width of a bubble domain is much less than
L, so that its boundary does not approach the other.

Finally, one can compute many-domain interaction en-
ergies in a similar way. For instance, for six points with
the 12, 34, and 56 separations all small compared to the
separation of any two pairs, one has three domains in the
upper half plane. Here, in an obvious notation, one finds

E 3 C i C (x i Qx 34x 56/x~bxbpxag )

where C] is the OPE coefticient of y~ in the expansion of
yi with itself. (If C~ vanishes, E3 will be determined by
a higher-order OPE term. ) Note that E3 does not have a
definite sign. In the strip, E3 will decay with separation
as exp[ —zc(u, b+u b, +u„)h /i2 L]. This decrease is at
least as rapid as that of any E2 for the same set of
domains, if all domain separations are multiplied by the
same scale factor. In this sense the three-domain interac-
tion is no stronger than the pair interaction, Higher-
order many-domain terms should behave similarly.

In deriving the above results, we have restricted our-
selves to the case of a single type of boundary operator.
Several generalizations are possible. First, for a given
boundary condition for x [ & 0, one can introduce any al-
lowed boundary operator (or a descendant) at x~ (and
x2). The energies of one or more domain of this type are
then given as above. However, the geometrical interpre-
tations may diA'er. For instance, a boundary operator
with dimension 6, = l'6 mediates a change between fixed

and free boundary conditions in the Ising class [15]. But
in this case the "domain boundary, " defined as above, is

along the real axis [26]. Second, one may calculate in-

teractions between diA'erent types of domains via four-
point correlations of two pairs of boundary operators.
Here E2, for example, will be determined by the most
relevant common operator in the OPEs of the two types
of operators defining the two different domains. For this
reason, the pair interaction may not be attractive. Third,
analogous results may be computed in fully finite
geometries (e.g. , a circle or rectangle) by use of the ap-
propriate conformal map. Finally, one may make similar
use of Eqs. (I) and (2) in the bulk, and by transforma-
tion in a strip with periodic boundary conditions. One
can easily compute, for instance, the interaction of "de-
fect lines" introduced by disorder operators.

Consider the strip geometry treated above with a given
boundary condition for x~ & 0. Introducing all allowed
boundary operators pairwise at x] and x2 will give rise to
"domain" energies involving the entire spectrum of con-
formal dimensions in the boundary theory, including
those in the conformal tower of the unit operator
[14,15,27]. Thus the domains may be regarded as weakly
interacting excitations of all possible degrees of freedom
of the theory. This picture suggests that one can recon-
struct the entire free energy in terms of domain boun-
daries, or some appropriate generalization of that con-
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cept. General scaling arguments [28] are not inconsistent
with this possibility.

In summary, we have presented a general method for
computing the energy of curved domain boundaries in
two-dimensional systems at second-order phase transi-
tions. We also find that two or more domains are weakly
interacting.
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