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In this work, we analyze the influence of non-Markovian effects on a pulsed time-delayed four-wave-
mixing experiment. By using a perturbative approach the density matrix equations are solved for a
medium modeled by two-level systems and excited by short pulses. We show that the intensity of the
diffracted light can be expressed as a simple function of the bath memory function. This demonstrates
the interest of such an experiment to get information on the bath.

PACS numbers: 42.50.Md

Introduction.—In the last decade, femtosecond spec-
troscopy has received considerable attention and is today
a powerful tool to study the optical dynamics of mole-
cules in solution [1-5]. These experiments show that the
loss of optical coherence can take place on a time scale
that corresponds to the correlation time of the interaction
with the surrounding bath. In this case, the Markov ap-
proximation often used in the theoretical treatment of
femtosecond processes is no longer valid.

Theoretical descriptions have already been made to
study the validity and limitation of this approximation.
In particular, two types of master equations using dif-
ferent ordering prescriptions and known as POP and
COP [6] have been used to calculate the non-Markovian
line-shape function. These equations correspond to dif-
ferent statistical properties of the bath. Using this the-
oretical approach, Nibbering, Duppen, and Wiersma [7]
proposed that resonance light scattering can be an alter-
native to femtosecond transient spectroscopy. But they
were unable to decide which type of master equation was
adequate to interpret their experimental results. Recent-
ly, theoretical studies [8] have been made to analyze the
non-Markovian effects of the dynamical processes on op-
tical absorption. They show that in the transient case,
band-shape functions can be used to get information
about the bath memory function. A couple of typical
memory functions have been used to demonstrate this
influence. In addition, in many approaches related to this
problem, a number of analytical functions have been re-
quired to characterize the bath. These dependences are
introduced either empirically or as resulting from micro-
scopic models. For this reason, the physical results that
have been established are dependent on the particular
models.

It is the purpose of this work to show that information
concerning the bath memory function can be obtained by
analyzing the diffracted light obtained in a forward de-
generate four-wave-mixing experiment [9]. These time-

study fast relaxation and dephasing processes [10,11].
We will show that the intensity of the diffracted light ob-
served in such an experiment is proportional to a simple
expression of the bath memory function. As a first step,
we start with the equations of the density matrix obtained
in the rotating-wave approximation and including a
memory kernel for the dynamics of the system modeled
by homogeneously broadened two-level systems excited
by short pulses. Using perturbative techniques up to the
third order we give a general expression of the third-order
contributions to the coherences. As a second step, we ap-
ply this general result to the case of the forward degen-
erate four-wave-mixing experiment. In our theoretical
approach no assumptions are introduced on the analytical
form of the bath memory function. This point makes our
results quite general with respect to the bath memory
function and independent of its analytical form.

The feasibility of the proposed experiment is mainly re-
stricted by the conditions on the pulse durations. We as-
sume that they are shorter than any characteristic time of
the medium and shorter than the correlation time of the
bath memory function. This can only be achieved by us-
ing femtosecond sources. For instance, the correlation
time of the bath for the S1— Sy and S>— Sy electronic
transition of azulene in isopentane and cyclohexane are
respectively 25 and 13 fs [7].

Theory.—For a system embedded in a heat bath, the
Liouville equation for the density matrix of the system is
given by

oD —itop(0) =it p) ~ [ M D)plt =),

(1

where Lo represents the Liouville operator of the system,
L, the Liouville operator for the interaction V' (¢) between
the system and the radiation field, and M (¢) is the
memory kernel for the dynamics of the system. The evo-

delayed four-wave-mixing techniques are a helpful tool to | lution of the density matrix elements can be expressed as
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where w,,, denotes the transition frequency between the

states |m) and |n) and V,,,(¢) takes the form
Vo () = 4)

Here, ., is the transition dipole moment and E(r,?) the
total electromagnetic field. It can be written as

E(r,0) =21} 6. (Dexpli(w,t —k, 1)1 +ccl},

— o E(r,1).

(5)

where c.c. stands for the complex conjugate part. For our
purpose we shall assume that the system can be modeled
by independent two-level systems which are in equilibri-
um at t=0. At the initial time, the system is in its
ground state |1) so that p;;(0) =1. The excited state |2)
is depleted and p,,(0) =0. In addition, with these initial
conditions, there is no initial coherence in the medium
and p,,(0) =0. Since |1) is assumed to be a ground state
and assuming that the bath does not induce transitions

from |1) to |2), we have the relations
M|]||(1)=0, M2|2|(1)=0 6)

|

To ensure the conservation of populations, it is necessary
to have

MB@W)=—MEQ). (@)

It is important to note that the time evolution of popu-
lations and coherences are not on the same time scale.
The time evolution of the coherences is much faster than
that of the populations. Therefore, to a first approxima-
tion, coherences will be more affected by the bath fluctua-
tions and we can neglect their influence on the popula-
tions. Then we assume

MW G)=r{sG), (8)

which corresponds to the Markovian case. Here, ['}{ is a
constant which describes spontaneous emission and §(¢)
is the Dirac’s distribution. Bath fluctuations will be taken
into account in the time evolution of the coherences by
M3 (t). In addition, if we consider femtosecond pulses
and a medium absorbing in the visible range, w,; is about
100 times the spectral width of the pulse. Therefore the
rotating-wave approximation can be used and the general
relations (2) and (3) can be written as

dp—;t(t—)‘=_—L[l;n(l)om(t)_O'|2(t)l72|(l)]+r|2|2p22(t), )

dpj;t(t) —_—[V2|(I)O'|2(l)_0'21(1)V|2(t)]_r Pzz(t), (10)

doa (1) . -

L = — L7 Olpn (0 = 01 = e 113 (o= 1), (1
with the definitions

Vo) =VH@) =—pr + TADexplirgdexplike 1), (12)

A;!zzl'(t)=M221'(t)exp(iw2|t), A=W —Wq. (13)

Here, the notation o3;(t) =p;(t1)exp(iwy(t) has been in- |

troduced. Equations (9)-(11) combined with the defini-
tions (12) and (13) are solved by using a perturbative
technique up to the third order. To the zeroth-order ap-
proximation we have

(W) ., o dp3® (1)

—_ =—— 14
i =TI'{{ps (1) w (14)

doiP (1) ro

—G;t—— j;)derzll(T)crz.(t—r). (15)

These equations are readily solved by introducing the ini-
tial conditions. We obtain p{Q () =1, pi (1) =0, and

pi®(1)=0. Using the zeroth-order solution previously
determmed the dynamical equations to the first order
take the form

dp{P’(1) 4 I’(z)

”‘;t =I#p () = ”cht (16)
d (l)() . f
==L = [ de i3 (o= o).

an

At the initial time, there is no first-order correction.
This implies that p{}’(1) =p$Y(¢) =0. Taking the La-
place transformation of Eq. (17), we get

oiP(p)=—-+ Var(p) (18)

h p+M22|| (p) .

Carrying out the inverse Laplace transformation of Eq.
(18) yields

Uz(})(t)=—%j;ll;z;(r)g(t—t)dr, (19)

where g(t) is the inverse Laplace transform of 1/[p
+M3! (p)]. Let us now assume that the variations of the
pulse envelopes A,(t) are much faster than the time evo-
lution of the system dynamics and much faster than the
correlation time of the bath. We also assume that these
pulses are centered at a positive time ¢,,. By introducing
the relation (12) into the expression (19), and using the
definition of o3,(¢), the first-order contribution to the
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coherences can be expressed as

P (1) == Fexpl—iag(t —1,)1g(t — 1, ) H(t — 1,,)Saexpl— i (wat —kq )] , (20)

2h %4

where S, = [ *Z[uy - Au(r)1dzr and H(z) is the Heaviside function.
We are now concerned with the second-order contributions to populations and coherences. They can be written in the

form
piP (1) =—pR ), Q1)
r 1. ~
pP () =— #J; Wy ()oM(r) =i ()IV 12 () lexpl— TG — 1)1dr (22)
o3P () =0. (23)
Introducing the first-order corrections previously determined, the contribution to the second-order populations takes the
form
1
PP ()= e §{g*(t,,,,—t,,a)H(t,,ﬁ—t,,a)H(t — 1, expl =T (1 = 1,,)]
+g(tp, = 1o,V H Utp, — 1, )H (t — 1, Jexpl =T 77t —1, )}
xexplidpty,)exp(—iAat,,)SpSa expli(ky—ko)-rl. (24)
We are now ready to evaluate the third-order contribution to the coherences. It results from the equation
doi’ () _ _ i, ) @) L az2l )
=T VW0 —pR (0] —j; dt M3 (t)o3(t — 7). (25)

Finally, using the second-order contribution given by the relation (24) and the definition of o7,(¢), the third-order con-

tribution to the coherences takes the form

Py=—-L
p2i 4

apy

T2 {g* (= tp ) H (1, — 1,V H (t — 1, Jexpl =T (e —1,,)]

+gty, —tp)Hp, — 1, )H(t — 1, Jexpl =Tt —1, )1}

xg(t =1, YH(t —1,)S,SpSs expl—i(A,+As—A) (1 —1,)]

xexpl —i(Ap— A (1, — tp ) expliagt,, — tp) lexplil(w,+ wp— 0 )t — (k,+ks—ka) 1]} . (26)

This expression enables us to determine the third-order
nonlinear polarization of the medium which is given by
the relation

PP,) =P, 0)+P>*(1,1) 7
with the notation
PO, =pp (1) . (28)

Application to forward degenerate four-wave mix-
ing.—Let us now apply these general results to a well-
known forward-degenerate four-wave-mixing experiment
illustrated in Fig. 1. The medium is excited by three
pulses. The pump pulses propagate in the direction k;
and k; and are delayed by 7. The probe pulse has a wave
vector k3 and we note T the delay between pulses 2 and 3.
We assume that the probe pulse arrives at least several
pulse widths after pulses 1 and 2. The output light inten-
sity in the direction ks =k3;+k, —k; is

+ oo
1~ [ "an e, 012, (29)
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where ‘Pﬁf)(r,t,r) is the part of the third-order nonlinear

polarization of the medium in the direction k4 and is
defined by the relation (28). This quantity is straightfor-
wardly obtained by selecting the terms in the direction
k;+k,—k; and k,+k;—k,; in the expression (26).
Neglecting t with respect to T, which is assumed to be

T T
- - > —>
k+k-k
3 2 1

A1
A3

N2

kl-k2+ k,

FIG. 1. Geometry for three-pulse time-delayed four-wave-
mixing experiment.
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positive, we obtain

|#|2|2
4h?
Bk
4h?

|2 (n,1,7)| 2=

Introducing these relations in the expression (29), the
output light intensity in the direction k4 takes the form

I(x)~|g(zD]?. 3n

This result can be understood as a generalization of the
one obtained in the Markovian case. In this case, the
memory function M 3] (¢) can be written as

Mgzll(t)=r2|5(l). (32)
Consequently, g(z) =exp(—T;¢) and /(z) reduces to
I(z)~exp(—2Iy|z]), (33)

which is a well-known result.

In conclusion, we have analyzed the influence of non-
Markovian effects in a three-pulse time-delayed four-
wave-mixing experiment. We have shown that the inten-
sity of the diffracted light can be expressed as a simple
function of the bath memory function when the medium
is excited by short pulses. Our calculation does not make
assumptions about the analytical form of the memory
kernel. For this reason, our result is quite general. The
experimental determination of |g(z)| is consequently an
easy way to get information about M3# (z). Therefore,
this type of experiment must be an interesting approach
to learn about the dynamics of the bath.
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1535, F 2lg* (t)e "ot —1, YHGt —1,)|% ©>0,
P3 P3

(30)
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