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Tests of Signal Locality and Einstein-Bell Locality for Multiparticle Systems
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For multiparticle systems we formulate the notions of signal locality (i.e. , absence of faster-than-light
signaling) and Einstein-Bell locality (or local realism) and obtain inequalities between experimental
correlation functions to test them. Quantum theory obeys signal locality but violates Einstein-Bell locali-
ty by a factor 2 " " for n-particle systems.
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The Einstein-Podolsky-Rosen (EPR) paradox [I] was
based on the following locality postulate [2]: "The real
factual situation of the system S2 is independent of what
is done with the system Sl, which is spatially separated
from the former. " Bell [3] made the discovery (Bell' s
theorem) that quantum mechanics contradicts this pos-
tulate. Experiments [4] apparently violate the Bell-
Clauser-Horne-Shimony-Holt (CHSH) inequalities [5]
following from Einstein-Bell locality.

On the other hand, in quantum field theory observables
at spacelike separation commute. This implies "signal lo-
cality, "

i,e., the absence of faster-than-light signals [6].
Signal locality can be formulated [7-9] independently of
quantum theory and also leads to inequalities which can
be experimentally tested [9]. Signal locality has previ-
ously been called "simple locality" by Ballentine and Jar-
rett [81 and "parameter independence" by Shimony [8].

EPR correlations for multiparticle systems have recent-
ly acquired great interest. Eberhard [10] proposed a
model which implies small violations of both Einstein-Bell
locality and signal locality for n-particle systems, if n) 3. We presented at a conference [11] three-particle
Bell inequalities and signal locality inequalities. At the
same conference Greenberger, Horne, and Zeilinger [12]
(GHZ) presented a proof of Bell's theorem without in-

equalities using a state of four spin- 2 particles. Motivat-
ed by the GHZ state, Mermin [13] recently derived an

elegant n-particle Bell inequality.
The purpose of this work is to present experimental

tests of signal locality as well as Einstein-Bell locality for
multiparticle systems. The n-particle Bell inequalities we
derive are violated by quantum mechanics by a factor
2 " ' for both even and odd n. The improvement with

respect to Mermin [13] is by a factor J2 for even-n ex-
periments. It results from our inequalities involving a
continuum of apparatus parameters. The largest viola-
tion is not always in the 6HZ state used by Mermin; this
fact may also be important for experiments.

dk, po(, ;a~,aq, . . . , a„) Q [1+tliAJO(. ;al, a2, . . . , a„)]jEJ

Consider a system of particles 1,2, . . . , n Hying apart
from an apparatus producing them. Let physical quanti-
ties 3 l, A2, . . . , A„be measured for them by instruments
in spacelike separated regions, settings of the instrument
(orientations of polarizers, magnets, etc.) measuring the
jth particle being collectively denoted by aj. Suppose
that by the very definition of the AJ. , ~AJ~ ~ I (e.g. ,
Aj =+1 for transmission through a polarizer and —

1 for
nontransmission). In any theory, the configuration of the
n particles may be characterized by the apparatus param-
eters al, a2, . . . , a„plus possible additional variables A, ,
with p(k;a~, a2, . . . , a„) being the normalized, non-
negative probability distribution of the configuration, and
AJ()(,;a(,a2, . . . , a„) being the expectation value of AJ in

this configuration. Hence, the m-particle correlation
functions are given by

(
foal

g At =) d)(, p(A„.a (,a 2, . . . , a„)r=l

&& + A; ();a),a2, . . . , a„),
where

(2)

Signal locality. —We define [7-9] signal locality to
mean that the expectation value of a physical quantity
measured in one spacetime region cannot depend on ap-
paratus settings in spacelike separated regions. Hence,

( rtA;)=p;, ;, . ;„(a;,, a;„. . . , a;, ), (3)
r=l

where the right-hand side is independent of apparatus
settings not appearing in the argument of P because they
refer to spacelike separated regions. Clearly, by changing
apparatus settings in spacelike separated regions, the pos-
tulate (3) can be directly tested experimentally.

We show below that the signal locality postulate also
implies interesting inequalities between diA'erent correla-
tion functions that could be measured in independent ex-
periments. Consider the consequence of signal locality,

=1+ g rtJP~ (aJ)+ g riJrit PJt, (aJ, at, )+ + + rij PJ, J, . . . J (aj„aj„.. . , aJ ) (4)
jE J jak, j,k G J ,j6 J

:—I(tij tile ' ' ' rij~ J j» ' ' ' ~j~)
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where J= [j(,jq, . . . ,j„,] is a subset of the integers
[1,2, . . . , n], and gj~=l for all j. In Eq. (4) the signal
locality postulate (3) has been used to restrict the argu-
ments of the correlation functions P. Using p~0, and
1Aj. l

~ 1, we then have the following 2 (...(ij. = ~1) ex-
perimental tests of the signal locality hypothesis for each
choice of J, and of the apparatus parameters aj (for
jc J):

(6)

inequalities. Consider

P;,;, . . . ; (a;„a;„.. . , a; ) = dip(k) g A; (k, a; ) . (8)
r=]

Using the elementary inequality

I x(y+y') I+ I
x'(y —y')

I
~ 2 m»(l x I, I

X'I )max(ly I, ly'I ),
(9)

together with 1Aj(A„,aj)1 ~ 1, and the definition

Ak((), ak() =r(k(Ak(k, ak) [A((&;a()+A((&,a()]
A violation of the inequalities (6) would imply a violation
of signal locality. It would also imply a violation of quan-
tum theory which respects signal locality. The inequali-
ties should be tested by the apparatus used to test Bell' s
inequalities.

Einstein Bell lo-caliry B.e—ll demanded [3,5] that in

Eq. (1), the probability distribution p for the con-
figuration be independent of the apparatus parameters
a ~, . . . , a„, and the expectation value Aj for the jth ap-
paratus be independent of orientations aq of the other
spacelike separated apparatus. Thus,

A, (k;a(, a2, . . . , a„)=A, (k, a, ), Vj;

p(k;a(, a2, . . . , a„)=p(X) .

These are locality requirements for each value of the vari-
ables A.. They imply on integration over A. the weaker re-
quirement of signal locality, Eq. (3), and hence the in-
equalities (6). In addition, they imply generalized Bell s

+(ik(wk (X,a/) [A((&,a() —A((i, a/)],
where r(k( =r(k( =1, and ak(=[ak, a/, a(,a/, rik(, rik(j, we

propre that IAk((&, ak()1~2. Multiplying by p(p), using
p(k) ~ 0, and integrating over A„we obtain the Bell-
CHSH inequalities. Now, define

A; k((X,a; k():g;,—k(A(&, a) [Akl(~ akl )+Akl(~ akl )]

(10)

where the left-hand side is seen to be a combination of
sixteen three-~article correlation functions. More gen-
erally, let A„"' (k,a„) and A~, "~(k,aJ) be m- and n

particle functions of the series

+ g,
'
k(A;(X, a ) [Ak((z, ak() —Ak((z, a/()],

where r(; k( =r( k( =1, and a;,k(—:[a;,a, ak(, a/, (, ri;k(, r(, ,k(],
where al,'I denotes a diAerent set of values of the parame-
ters ak( defined before. Then, using the inequality (9),
1A;1 ~ 1, and 1Ak(1 ~ 2 derived before, we prove the gen-
eralized Bell inequalities [11],

„dXp(k)A; k((X,a; k() ~ 4,

A + a ) Akl(~ akl) A, kl+ a,kl) A jkl(~ a(j, kl) A, jkl(~, a(jkl)

Then, another member of the series is

A„'"„',+"'0, „,, ) —= ri„,A„t"'(A., „)[A,'"'(A„,)+A,'"'(A, ,')]+ rb, A ' '(A, , ') [A,'"'(A, ,) —A,'"'(A, ,')],

of which the two-, three-, and four-particle Bell inequali-
ties given before are special cases. It is cumbersome but
straightforward to see that for the quantum-mechanical
states of spin- & particles, AJ'"'(X, aj) —= Im Q [Aj4„a,)+iqjAJa, a-j')],

i&J

where ri„~, =ri,',, =1. The corresponding (m+n)-particle
generalized Bell inequality we obtain is factor 2~" ' for n=2, 3, and 4. The fact that this

holds for general n will now be proved using generaliza-
dk p(k)A„', , +"'(k,a„J) ~ 2"'+" tions of the elegant method of Mermin.

Let us define, for g~ =1, and j E I=set of n positive
integers specifying the particles involved,

112&+ =—(ll&~12&- ~ l1& 12&+)/J2,

1123)w =(112)+13) ~112) 13)+)/J2,

11234&~ = (112&+134&-+ 1»& -134&+)/~2,

where lj)+. denote eigenstates of the Pauli matrix o,j
with eigenvalue ~1; the quantum analogs of the left-
hand side of (11) can be made equal to 2J2, 8, and
1642, respectively, for n =2, 3, and 4 by suitable choices
of the apparatus parameters, whereas the right-hand side
analogs are 2, 4, and 8, respectively. Thus the n-particle
Bell inequalities are violated by quantum mechanics by a

1A,'"'(X,a, )1~p„, 18J'"'4,,aJ)1~p„, (12)

where p„=2 " ' for odd n and p„=2" for even n.
%e immediately obtain generalized Bell inequalities on

where aJ ——[aj,aj', r(~. 1j E J]. Both the functions are linear
in each of the 2n quantities Aj(k, aj), Aj(k, aj), which
can vary between —1 and +1. Hence,
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n-particle correlation functions,

J dhp(X)AJ("'(X, a~) ~ p„,

„dip(k)BJ("'(k,aJ) ~ p„.

(i3)

two out of the set

[AJ'"'(X,aj ),AJ'"'(X, aj'), BJ'"'(X,aj ),BJ'"'(X,aj )],
and y~"' (X),yl("' (X) be any two out of the set

[Ag"'(Z, a~ ),A~"'(X,al(), B~"'(X,a~), B~"'(X,ag )j,

Further, we can combine n- and m-particle inequalities
of the form (12) usin~ Eq. (9) to obtain (m+n)-particie
inequalities. Let xJ" (X),xJ' "~(X) be chosen to be any

where the n-particle set J and the m-particle set K con-
tain no particle in common. Then we derive the following
(4c2X4c2=36) generalized Bell inequalities on (m+n)-

t

particle correlation functions for each choice of the parti-
cle sets J,K:

J dX p(k)xJ'"'(X) [yp"'(k)+yp'"'(X)] + dk p(k)xj'("'(k) [y&~'(X) —yp™(X)]~ 2p.p~ . (14)

A particularly simple special case of this with the choice J=1,2, . . . , n —1, K =n, yields the generalized Bell inequality

I, = J dA p(X)AJ" ' (k, aj)[A„(k,,a„)+A„(k,a„')] + dip(k)BJ" '
(A. ,aj)[A„(k,a„)—A„(k,a„')] ~ 2"

if n is even. In a quantum state Iy) the correlation functions corresponding to the left-hand sides of (13) are represent-
ed by

dip(k)[AJ" (7.,aj),BJ" (A, , aq)] (pl[AJ" (aj),BJ" (aJ)]I@),

where

[(AJ" (aJ),BJ" (aJ)1= l + a' ~ . (a~+iri~aj) + H.c.
,j6 J

and H.c. denotes a Hermitian conjugate. Similarly, the
correlation function corresponding to the left-hand side of
(15) is represented quantum mechanically by

l„~ =I(ylAJ" ' (aJ)o " (a„+a„')Iy&l

and (I g)

I (+(ni) 2(2n —(i/2 1„(y'("i) (i9)

+
I

& pl BJ'" "(a1)a'"' (a„—a„')
I y& I .

%e use the n-particle quantum states,

(i 6)

(I~(n
—I))

I

(n —I)))
I t)]

and choose aj =x, a~ =y, g~ =1 for j ~ n —
1 to obtain

[A " ' (/ )+2" ]I/~ ')=(&

[BJ(~
—

~&(aJ) ~2~ —
2]lg~

—i) =0
(n)I[A (n —I)( ) 8(n —I)( )] (n).

I
(n))

= —2" '[(a„),(a„)„,].

(i 7)

Further, choosing a„and a„' in the y-z plane with com-
ponents a„=(0,1/J2, 1/J2), a„'=(0, + I/J2, + I/E2)
for the states I y " ), Iy' " ), we obtain from Eqs. (16)

which violate the generalized Bell inequality (15) for
even n by a factor 2 " ' . Letting n n+1 in Eqs.
(17) and comparing with the generalized Bell inequalities
(13) we see that they are violated by a factor 2 " ' i for
odd n. [For the first inequality of (13) this is Mermin's
result. )

Our inequalities for large n add another dimension to
the large body of previous research on quantum mechan-
ics at the macroscopic level. As summarized by Leggett
[14], "we are all familiar with the idea that while the mi-

croscopic description of the physical world requires quan-
tum mechanics, at the macroscopic level a classical de-
scription suffices. . . . In sum, it is claimed that at the
macroscopic level, . . . we never have to deal with states in

which a macroscopic variable is not even approximately
defined, i.e., a quantum superposition of macroscopically
different states. " Leggett and others [14] have considered
tests of this claim in solid-state physics, hoping either to
see quantum interference at the macroscopic level or to
discover serious evidence against the universality of the
quantum description. Ghirardi, Rimini, and Weber [15]
have proposed modifications of quantum theory designed
to limit superpositions of macroscopically different states
to very small time intervals. Bur results show that in the
absence of such modifications, quantum theory will
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violate classical mechanics by a factor of 2 " ' for
macroscopic systems, too.

For sma[] n (=3,4, for example), it seems feasible to
experimentally produce photonic analogs of states such as
p+, g ~, tlt, and tlt' via cascade photon decays of atomic
systems. Real experiments for multiparticle systems
could then be designed using suggestions of Greenberger
et al. [16].
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