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Results for d=2 percolation allow one to determine exactly the critical exponents for a polymer un-
dergoing the special surface transition, while its bulk is at the ®' point. ;=% and ¢, = 2~ are the entro-
pic and the crossover surface exponents, respectively. On the other hand, exact enumerations analysis
leads to conjecture ;=% at an ordinary ©' point. This strongly supports universality of © and 6’
points. Similar exact results are obtained for a multicritical walk in the presence of correlated percola-

tion vacancies.

PACS numbers: 05.70.Jk, 36.20.Ey, 64.60.Ak, 64.60.Kw

Adsorption on a substrate and collapse of a polymer
are processes of much fundamental and applicative in-
terest [1-3], especially when they can compete and occur
simultaneously. A system which attracted particular at-
tention in the recent literature consists of a linear poly-
mer in dilute solution, with effective attractive interac-
tions between monomers and between each monomer and
a solid wall limiting the solvent. Models for such a sys-
tem can be formulated, e.g., in the framework of lattice
self-avoiding walks (SAW) [4-6], and their properties
are expected to be relevant for a variety of problems,
ranging from polymer physics to membrane biophysics
[71.

In the context of statistical mechanics, polymer adsorp-
tion can be seen as a problem in surface critical phenome-
na [3], and is by now relatively well understood, when
occurring alone. Adsorption is a multicritical phenome-
non and corresponds to the special transition of magnetic
systems with a boundary surface [3]. In bulk dimension
d=2 (d=1 dimensional boundary), the critical ex-
ponents are even known exactly [8].

The situation is less clear as far as the coil-globule
transition of a polymer in the bulk is concerned. A SAW
with an attractive interaction for each pair of nearest-
neighbor (NN) not consecutively visited sites shows a
critical © temperature above which it behaves as a poly-
mer in good solvent [fractal dimension D=(d +2)/3],
and below which it becomes a compact globule (D=d)
[9]. The © point separating these two regimes is again
multicritical. In d=2 the © point still constitutes a big
theoretical challenge, in spite of the intensive studies re-
cently devoted to it. These studies were strongly stimu-
lated by introduction of the so-called ©'-point model
[10,11]. For this model, described below in a generalized
form, bulk and ordinary surface exponents were either ex-
actly computed or conjectured on the basis of Coulomb
gas and conformal invariance methods [11]. Results for
the 6’ point soon raised the problem of the universality of
B-point behavior. Indeed, at variance with bulk critical

indices, surface exponents estimated on the basis of nu-
merical investigations on different 6-point models [5,12,
13] turned out to be in open disagreement with those pre-
dicted in Ref. [11].

Below we keep the distinction between 6'- and 6-point
models. The former has the peculiarity that interactions
are caused by annealed percolation vacancies.

When combined in the same model, adsorption and col-
lapse are expected to give rise to a higher-order multicrit-
ical point (special © point) as discussed in many recent
works [4-6]. However, also in d=2, the critical ex-
ponents associated with this point remained a puzzle so
far, even after the use of sophisticated transfer-matrix
methods [14].

In this Letter we generalize the ' model to describe
both polymer collapse and adsorption. This leads to exact
predictions for the special ©'-point critical behavior based
on the connection between our model and bulk and sur-
face percolation geometry. As a further bonus we clarify
the long-standing puzzle concerning © and ©' universali-
ty. Indeed, we explain discrepancies between previous
predictions and results on surface magnetic exponents in
terms of the basic distinction between ordinary and spe-
cial surface critical behavior [3].

Consider a semi-infinite hexagonal lattice as sketched
in Fig. 1. Hexagons are present or absent with probabili-
ties p and 1 — p, respectively. This defines a site percola-
tion problem on the dual, triangular lattice. A SAW is
then assumed to take place on the hexagonal lattice, sub-
ject to the condition of not stepping on edges belonging to
occupied hexagons. If only bulk properties are con-
sidered, this is the model of the 6’ point proposed in Ref.
[10]. However, introduction of semi-infinite geometry al-
lows one to get further insight into it and to establish a
new connection with the special ©'-point physics, by prop-
erly choosing the boundary conditions on the surface.

The generating function of the problem is given by

G(K,p)=;P(C) > k", (1)

W compatible with C
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FIG. 1. Walk of N =22 steps with N, =6, N, =4, N;=4, and
N} =0.

with C denoting percolative configurations with probabili-
ty P, and W a walk of |W| steps. K is a step fugacity.
Performing the annealed sum over C in Eq. (1), a walk
with N steps touching H distinct hexagons contributes
with a grand-canonical weight K¥(1 —p) .

For a walk which does not touch or step on the bound-
ary, one has

H=N+1—N,—2N;, )

where N, (IV3) is the number of hexagons visited 2 (3)
times by nonconsecutive steps of the walk. When steps
are made on the surface, H has to be modified, and its ex-
pression depends on the boundary conditions we impose.
It is natural to assume that, since there are no hexagons
across the boundary, there is no further restriction for
steps on it, in addition to the usual one, referring to occu-
pations of hexagons within the semi-infinite region. It
can be shown that, in this case,

H=N+1—N,—2N;—(N,+N,)/2, 3)

where N, (V,) is the number of steps at (towards) the
surface (Fig. 1) [15). Thus, the effect of annealed vacan-
cies is to introduce attractive self-interactions (1 —p <1)
for the walk [Eq. (2)], and attractive interactions be-
tween the surface and the walk, as well, when they are
coming into contact [Eq. (3)].

Equations (2) and (3) indicate that our model has the
same ingredients as a more standard model (8-point
model) of the special © transition in d=2. In that con-
text one usually [5] considers a SAW with origin on the
surface, described by a generating function of the form

G(K’w’ws)=ZK|W|ewN,(W)ew,NS(W) , (4)
w

where @ and w; are reduced attraction energies, while V;
and /N, represent the number of self-interactions and the
number of steps on the surface, respectively. N is the
number of NN visited sites.

Our ©' model should display the same universal
features as the ©-model (4). The expected phase dia-
gram for model (4) is reported in Fig. 2. Equations (2)
and (3) and the weight K¥(1 —p)¥ tell us that in the ©'
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FIG. 2. Critical regime (schematic) for a walk described by
Eq. (4). The curved line corresponds to the special regimes.
The vertical segment corresponds to ordinary © behavior and
terminates at the special 8 point.

model N,+2N; and (Vs + N,)/2 are replacing N; and N;
in (4), respectively. Furthermore, our parametrization of
(1) implies that, as a function of p, we move along a line
e®=e" =(1—p) "' on the plane corresponding to that of
Fig. 2.

The point p=1+ of our 8' model must exactly corre-
spond to the special ®' point in Fig. 2. Indeed, a given
percolative configuration C can be identified by giving the
contours (hulls) of occupied clusters. On our hexagonal
lattice these hulls are self-avoiding and mutually avoiding
rings (SAR) which can possibly touch the surface. Thus,
a SAR obeying our prescriptions is geometrically indis-
tinguishable from each individual hull specifying C. If
N, and N, hexagons are, respectively, absent and present
in C, the weight for each N-step ring is just KVP(C)
=Kk —p)N"PN". So, for K=1 and p = ¥, there is also
an identity in statistical weight between the SAR and
each hull. On the other hand, p=1% is the threshold of
triangular site percolation. So, at p=17 and K=1, our
SAR must be critical and have the same geometrical
properties as the percolation hull. In these conditions the
SAR has thus the fractal dimension D =1/v=7/4 of the
hull [16] and its grand-canonical radius of gyration grows
like AK ~VP=AK "% for AK=1—K approaching zero
[11].

Most important here is that the fractal dimension D; of
the intersection of the critical percolation hull with a
boundary is by now known exactly [17]. Thus one can,
e.g., consider the SAR statistics in the case that it
touches one point of the boundary (N, = 2). Such statis-
tics is identical to that of occupied cluster external hulls
passing through the same point. So, on the basis of the
above identification, indicating by {N,) the grand-
canonical average number of steps of the ring on the sur-
face, and taking into account that AK ~'/? is the correla-
tion length, we expect

(N ~AK ~PP = A 4P (5)
with D, =% [17], for AK — 0*. Moreover, this behavior
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should hold for a quantity like {V;+ N,) as well, because
clearly, for SAR, Ny+2 < N,+N; <2N,, if N, > 0.

Insight into the entropic (magnetic) exponents of our
6’ model can be obtained by realizing that at K=1,
p=7 this is exactly equivalent to the O(n=1) loop gas
in the low-temperature phase, which can be solved by
Coulomb gas techniques [11]. In fact, this loop gas ex-
actly corresponds to the zero-temperature Ising model.
As a consequence of this being ordered, the bulk and sur-
face correlation exponents,  and 75, respectively, both
have to be zero [11]. This further implies that y=1y,
=%, yand y being, respectively, the bulk and surface
magnetic exponents of our walk at p=15 [y=v(2—1p),
Y = V(2 - 77/2 - Tlr/2)]

Notice that the same value of y, was conjectured for
the ©'-point model in Ref. [11]. However, as we show
below, the interpretation given there to y, was different
from ours, because it was not seen as a special exponent.
The critical point of our model at p=+ must clearly
coincide with some point in the plane corresponding to
that of Fig. 2. First of all, we can exclude its location in
the whole region above the adsorption line. Indeed, there
one should trivially have D; =1, corresponding to a poly-
mer adsorbed on the boundary [3]. Once one excluded
the adsorbed region, only surface critical behavior con-
sistent with ©' bulk exponents is possible. This means
that the point has to fall in the vertical segment repre-
senting the locus of ©' ordinary and special critical points
[18l.

The divergence (5) obtained above for (N,), and for
(N;+N,), also allows us to exclude ordinary critical be-
havior. Indeed, a general theorem, and conformal invari-
ance, imply a scaling dimension y;=—1 for a coupling
like w; in model (4) at an ordinary transition [19], be-
cause the conjugate operator has nonzero average at the
boundary. As shown below, y;=—1 would imply that
(N,) does not diverge, in contradiction with Eq. (5). On
the contrary, we can conclude that y,=D,=7% is the
correct scaling dimension of a parameter like w; at our
critical point. Indeed, let us indicate by

fs =InG =,/:T(szqws) (6)

the surface free energy of a walk whose G is of the form
(4), but now appropriate to the ©'-point model. We
clearly have

(N)~(N,+N,) e /s .
dw,

@
According to whether the point we consider belongs to
the special or to the ordinary critical regime, we will have
that, in terms of deviations of w;, w, and K from the ap-
propriate values, the scaling of (/V,) can be written as

(NJ(AK ,Aw,Aw,) =I"{N)UYAK,I"°Aw, I Aw, ) , 8)

where we already know y = 7 and yeo= 3, the bulk cross-
over exponent of the 8’ point [11,20]. Now, if y,=—1,

like at an ordinary transition, {N,) cannot diverge for
AK— 0. We know, however, that this is the case from
Eq. (5), which is clearly compatible with (8) if and only
if y,=D, = % .

Thus our model, for p= 1, is at the special ©' point,
with y; = 1. At such a point the surface crossover ex-
ponent is defined by (N,)~AK ~* [3], which here implies
¢s =D,/D =8/21. For directed polymers one has ¢, = ¥
[14].

The p =% critical point of the ' model with boundary
coincides with the special 8’ point on the (w,w;) plane,
and we expect the relative exponents to be universal and
independent of the specific details of our ©' model.

In order to verify our predictions, and further clarify
the role of boundary conditions in our model, we per-
formed exact enumerations for walks of up to 34 steps
with origin on the surface. We studied, in particular, the
71 exponent, describing the quantity

Cv=XCy(H)1—p)H ~ N"!
H N

— 00

KeV, )

with p=14% and Cn(H) representing the number of N-
step walks touching H hexagons. Our estimate, obtained
by differential approximants [21] at K=1, was y;=1.11
+0.04, in very good agreement with the predicted value.

We also studied the scaling behavior of (N;), getting an
estimate ¢, =0.41 = 0.03, again consistent with ¢, = > .

Our work also explains why previous studies of the 6-
point models failed to show y, = 2 and led to the most
likely wrong belief that the 8 and 6’ points could belong
to different classes. So far, all investigations of the ©-
point ¥, exponent, both for SAW and for trails, gave
values compatible with y, =% [5,12,13], a value corre-
sponding to n; =2 and consistent with conformal invari-
ance. In these studies, however, one was looking for ordi-
nary critical behavior, and no interactions with the sur-
face were included in the models. Thus y, =% should
qualify as the correct ordinary surface exponent at the 6
point, while y,=% as the special one, if universality
holds.

Using our exact enumeration we also studied the ordi-
nary surface behavior at the 6’ point by putting H equal
to expression (2) ‘for the walks in Eq. (9). In the
correspondence with model (4), this boundary condition
is equivalent to putting w; =0. With this modified H in
Eq. (9) we obtained from our exact enumeration 7%,
=0.57£0.02, in very good agreement with the conjec-
ture y, = 4 and with previous results for 8-point models
[5,12). This clearly supports our conclusion that ¥, =4
and y, =% are the correct exponents at special and ordi-
nary 6’ criticality, respectively. On the other hand, since
only ordinary criticality was studied so far for other 6-
point models, it is natural to expect y; =% also for the
special © point.

The new ideas and methods presented above for the
study of the special 8’ point can easily be generalized to a
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model on a hexagonal lattice with correlated percolation
vacancies [22]. In this model an Ising variable o specifies
the occupation status of each hexagon and the o’s in-
teract through a NN interaction, L. At the critical tri-
angular coupling, L. =0.274..., a walk through vacan-
cies has a multicritical behavior, for which the bulk ex-
ponents are v= L (the reciprocal of the fractal dimen-
sion of Ising cluster hulls at criticality [23]) and =1,
consistent with a ¢ = + central charge [22].

Following the same line of reasoning as above, one con-
cludes that the walk with open Ising boundary at L, must
be at a special point, with y,=% (¢, =y,v=3), the
fractal dimension of Ising clusters at a boundary [23].
Following the methods of Ref. [22], we estimated this
exponent by extensive Monte Carlo enumeration as ¢;
=0.62 +0.03. The special character of the point L =L,
has been also revealed by the fact that there one finds
¥1=0.99 + 0.04, consistent with y; =1, in contrast with
an ordinary value y;=0.852%0.04. This ordinary ¥,
could, e.g., be consistent with n, = ¥ and 71 =2 both
values being compatible with a ¢ = + conformal theory.

Summarizing, we were able to determine exactly the
critical behavior of a polymer at the special ' point in
d =2 on the basis of the geometrical properties of per-
colation at ordinary criticality.

Our results show that the surface magnetic exponents
previously conjectured for the ' point do not pertain to
the ordinary, but to the special regime, thus solving the
long-standing puzzle of universality of © and ©' points.

Similar results can be obtained for a recently proposed
walk model with correlated Ising vacancies.

Note added.— Most recently, the value §, =% for the
ordinary ©' point has been derived exactly on the basis of
Coulomb gas methods [24].
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